

Correlations between Topological Resonance Energy of Methyl-Substituted Benz[c]acridines, Benzo[a]phenothiazines and Chrysenes, and their Carcinogenic or Antitumor Activities

TERUO KURIHARA¹, NOBORU MOTOHASHI², GUI-LIN PANG³, MASARU HIGANO¹, KATSUNORI KIGUCHI¹
and JOSEPH MOLNÁR⁴

¹Department of Chemistry, Faculty of Science, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama 350-02, Japan;

²Department of Medicinal Chemistry, Meiji College of Pharmacy, 1-22-1 Yato-cho, Tanashi-shi, Tokyo 188, Japan;

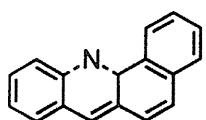
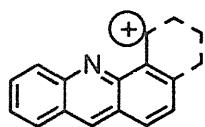
³Department of Chemical Engineering, Xinjiang Institute of Technology, Urumqi, Xinjiang,

830008 People's Republic of China;

⁴Faculty of Medicine, Institute of Microbiology, Albert Szent-Györgyi Medical University, Szeged, Dóm tér 10,
H-6720 Hungary

Abstract. In order to clarify the effects of methyl substitution on the carcinogenic activity, each resonance energy (RE) of benz[c]acridines, benzo[a]phenothiazines, chrysene, and their methyl derivatives was calculated by Aihara's TRE theory. Some correlations seem to exist between the values of resonance energy per π -electron for the cationic species - with the lack of the atom having the highest approximate superdelocalizability ($Sr'(E)$) from their parents skeleton - and carcinogenic activity.

The concern need to protect our environment from powtants is of rising worldwide. We have studied the relationship between their antitumor activities of benzo[a]phenothiazines or carcinogenic activities of benz[c]acridines, and the values of the resonance energy per π -electron (REPE) (1,2). We calculated the values of REPE for the parent molecules and species lacking a double bond in the K-region or M-region of the parent skeleton, and applied this in the prediction of their carcinogenicity. In all cases, the values of the REPE for the compounds lacking a double bond in the K-region were greater than those of the corresponding parent compounds (Figure 1), whereas the values of the REPE for compounds



lacking a double bond in the M-region were smaller than those of their parent compounds (Figure 1). Some methylbenz[c]acridines and arenes (3) are strongly carcinogenic, whereas their derivatives are inactive (4-6). Generally, the carcinogenic mechanism of these compounds is very complicated; with the parent molecules undergo the various metabolic transformations. Consequently, the chemical and physical properties of all metabolic intermediates are taken into accounts in order to predict their carcinogenicity, as the presumed ultimate carcinogenic areas of arenes such as dihydrodiols and epoxides are highly reactive (7). Theoretical calculations by a semiempirical molecular orbital method such as parametric method 3 (PM3), have difficulty in predicting the carcinogenicity of all metabolic intermediates. The purpose of this paper was to show the relationship between the antitumor activity of methylbenzo[a]phenothiazines or carcinogenicity of methylchrysenes, and the values of REPEs calculated by ω -technique on the mechanism of the antitumor effect, or carcinogenicity caused by methyl substituents of the parent compounds (not metabolites) (8). Interestingly, a good relationship was found between the antitumor activity (and carcinogenicity), and the cationic REPE values for the species (without sulfur (S), nitrogen (N) and carbon (C) atoms) having the values of the highest approximate superdelocalizability ($Sr'(E)$) on each parent skeleton existed.

Calculations

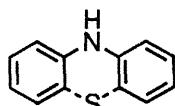
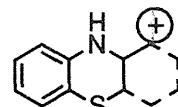
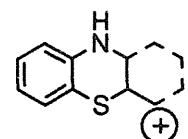
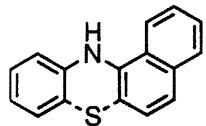
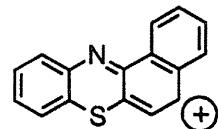
Calculations of Aihara's topological resonance energy (TRE) were carried out by the ω -technique which evaluated the heteroatom parameters for the amine nitrogen, the imine nitrogen, the ether oxygen,

Correspondence to: Dr. Teruo Kurihara, Department of Chemistry, Faculty of Science, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama 350-02 Japan. Tel: (+) 0492-71-7959; FAX: (+)0492-71-7985

Key Words: Effect of methyl substitution, resonance energy per π -electron, benz[c]acridine, benzo[a]phenothiazine.

Structures for REPE ($Sr^{(E)}$) and REPE (B) of benz[c]acridines (**1-12**)Structures for REPE ($Sr^{(E)}$)

Structures for REPE (B)

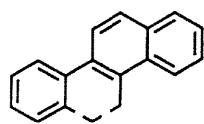
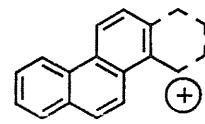
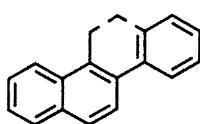
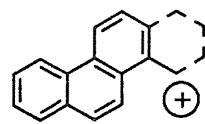
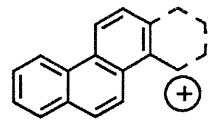





Structures for REPE ($Sr^{(E)}$) and REPE (B) of phenothiazines (**13-21**)
phenothiazine (**13**)Structures for
REPE ($Sr^{(E)}$) of **13**structure for REPE (B)
(0.0172 β) of **13**structure for REPE (B)
(0.0172 β) of **13**benzo[a]phenothiazines (**14-17**)Structures for REPE ($Sr^{(E)}$)
of **14-17**Structures for REPE (B)
of **14-17**5-oxo-5H-benzo[a]phenothiazines (**18-20**)Structures for REPE ($Sr^{(E)}$)
of **18-20**5H-benzo[a][1,4]benzothiazino[3,2-c]phenothiazines (**21**)Structures for REPE ($Sr^{(E)}$) of **21**Structures for REPE ($Sr^{(E)}$) and REPE (B) of chrysenes (**22-32**)Structures for REPE ($Sr^{(E)}$)
of **22,25,27,29,30,32**Structures for REPE (B)
of **22,23,26-32**Structures for REPE ($Sr^{(E)}$)
of **23,24,26,28,31**Structures for
REPE (B) of **24**Structures for
REPE(B) of **25**Figure 1. Structures of REPE($Sr^{(E)}$) and REPE(B) of benz[c]acridines (**1-12**), phenothiazine (**13**), benzo[a]phenothiazines (**14-21**) and chrysenes (**21-32**).

Table I. Bond-order, REPEs and $Sr^{(E)}$ of benz[c]acridines (1-8).

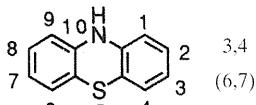
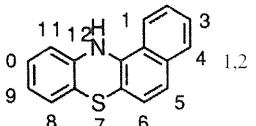
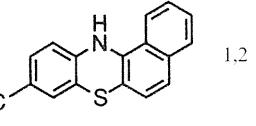
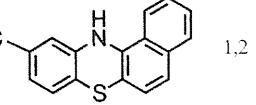
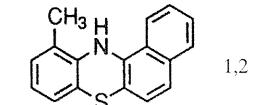
Compd's No. and structure	Bond ¹⁾	Bond-order	REPE (P)	Approximate superdelocalizability (in β unit)			$\Delta PS^8)$	$\Delta PB^9)$	Carcinogenicity index ¹⁰⁾
		(β unit) ²⁾	(in β unit) ³⁾	Position ⁴⁾	$Sr^{(E)}\text{5})$	REPE ($Sr^{(E)}\text{6})$			
1, benz[c]acridine									-
	10	5,6	0.782	0.0344	12	0.993	0.0304	0.0252	0.0040
2, 7-methylbenz[c]acridine									+
	2	5,6	0.781	0.0306	12	1.042	0.0272	0.0223	0.0034
3, 8-methylbenz[c]acridine									-
	3	5,6	0.782	0.0306	12	1.011	0.0269	0.0222	0.0037
4, 9-methylbenz[c]acridine									-
	4	5,6	0.782	0.0308	12	0.998	0.0270	0.0224	0.0038
5, 10-methylbenz[c]acridine									-
	5	5,6	0.782	0.0306	12	1.010	0.0269	0.0222	0.0037
6, 11-methylbenz[c]acridine									-
	6	5,6	0.782	0.0308	12	1.000	0.0270	0.0223	0.0038
7, 5,7-dimethylbenz[c]acridine									-
	7	5,6	0.779	0.0279	12	1.019	0.0246	0.0201	0.0033
8, 7,8-dimethylbenz[c]acridine									+
	8	5,6	0.781	0.0279	12	1.049	0.0245	0.0201	0.0034

¹Bond: Position with the biggest bond-order. ²Bond-order: Bond-order (in β unit) at the position with the biggest bond-order. ³REPE (P): Resonance energy per π -electron (in β unit) of parent. ⁴Position: Position with the biggest approximate superdelocalizability in parent. ⁵ $Sr^{(E)}$: Approximate superdelocalizability in parent. ⁶REPE ($Sr^{(E)}$):REPE except the position of the biggest $Sr^{(E)}$ in parent. ⁷Carbocation species derived from the ring-opening of the bay-region diol-epoxide. ⁸ ΔPS : REPE(P)-REPE ($Sr^{(E)}$). ⁹ ΔPB =REPE(P)-REPE(B). ¹⁰Carcinogenity index (Ref. 4,12,13): +: carcinogenic; -: noncarcinogenic.

Table I. (continued). Bond-order, REPEs and $Sr^{(E)}$ of benz[c]acridines (9-12).

Compd's No. and structure	Bond ¹⁾	Bond-order	REPE (P)	Approximate superdelocalizability (in β unit)			$\Delta PS^{(8)}$	$\Delta PB^{(9)}$	Carcinogeni- city index ¹⁰⁾
		(β unit) ²⁾	(in β unit) ³⁾	Position ⁴⁾	$Sr^{(E)}{^5)$	REPE ($Sr^{(E)}{^6)$			
9, 7,10-dimethylbenz[c]acridine									
			5,6	0.781	0.0277	12	1.059	0.0244	0.0200
10, 7,11-dimethylbenz[c]acridine									
			5,6	0.781	0.0279	12	1.051	0.0246	0.0201
11, 7,9,10-trimethylbenz[c]acridine									
			5,6	0.781	0.0255	12	1.066	0.0222	0.0182
12, 7,9,11-trimethylbenz[c]acridine									
			5,6	0.781	0.0257	12	1.055	0.0223	0.01B3

and the ketone oxygen (9). In this paper, we adopted these data values with some other heteroatom parameters. For these calculations, the FACOM M770 computer in the Josai University Information Sciences Center was used (Figure 1).






Results and Discussion

Relationship between carcinogenic activity, and REPE (ΔPS and ΔPB) on twelve benz[c]acridines (1-12) with two analogs (1s-12s and 1b-12b). The REPE values of twelve benz[c]acridines (1-12) and their corresponding analogs (**1_K-12_K** and **1_M-12_M**) - without a double bond in the K-, or M-region, were calculated by a standard Hückel orbital method (HMO) (10). Firstly, the calculated REPE values for the K-region of benz[c]acridines lacking a double bond (**1_K-12_K**) were higher than those of the corresponding parent benz[c]acridines (**1_P-12_P**). Secondly, the REPE values of M-region benz[c]acridines without a double bond (**1_M-12_M**) were lower than those of the corresponding parent benz[c]acridines (**1_P-12_P**). However, in comparison with both REPE values, the substitution effect by the methyl group (s) cannot represent the relationship between carcinogenic activity, and the corresponding REPE value of benz[c]acridine (1) and methylbenz[c]acridines (2-12).

Thirdly, 7-methylbenz[c]acridine (2) with strong carcinogenicity showed the difference ($\Delta PK=-0.0017\beta$) between REPE ($2_P=0.0317\beta$) of 7-methylbenz[c]acridine (2) and REPE ($2_K=0.0334\beta$) of 7-methylbenz[c]acridine (2). Noncarcinogenic 9-methylbenz[c]acridine (4) showed the difference ($\Delta PK=-0.0018\beta$) between REPE ($4_P=0.0315\beta$) of 9-methylbenz[c]acridine (4) and REPE ($4_K=0.0333\beta$) of 9-methylbenz[c]acridine (4). The two ΔPK 's difference between $\Delta PK=-0.0017\beta$ of carcinogenic 7-methylbenz[c]acridine (2) and $\Delta PK=-0.0018\beta$ of noncarcinogenic 9-methylbenz[c]acridine (4) was very close. Similarly, the substituent effect induced by the methyl group (s) in twelve methylchrysenes (22-32) did not show clear differences between carcinogenicity, and the ΔPK s of eight carcinogenic (22, 26-32) and three noncarcinogenic methyl-chrysenes (23-25) (10). Due to this, the above REPE calculations employed an ω -technique, instead of a standard HMO method.

Table I shows the bond-order, resonance energies per π -electron (REPE(P)s), approximate superdelocalizability ($Sr^{(E)}$) in the parent compound, REPE($Sr^{(E)}$) (REPE value minus the position of the highest $Sr^{(E)}$ in the parent compound), REPE(B) (carbocation species derived from the ring-opening of the bay-region diol-epoxide), the REPE value difference (ΔPS) between the parent compound's REPE

Table II. Bond-order, REPEs and $Sr^{(E)}$ of phenothiazine (13) and benzo[a]phenothiazines (14-17).

Compd's No. and structure	Bond ¹⁾	Bond-order	REPE (P)	Approximate superdelocalizability (in β unit)			$\Delta PS^8)$	$\Delta PB^9)$	Carcinogenicity index ¹⁰⁾
		(β unit) ²⁾	(in β unit) ³⁾	Position ⁴⁾	$Sr^{(E)}\text{5})$	REPE ($Sr^{(E)}\text{6})$			
13, phenothiazine									
			3.4 (6,7)	0.666	0.0311	5	1.130	0.0371	0.0172 0.0172
14, 12H-benzo[a]phenothiazine									
			1.2	0.724	0.0306	7	1.130	0.0360	0.0245 -0.0054
15, 9-methyl-12H-benzo[a]phenothiazine									
			1.2	0.724	0.0278	7	1.267	0.0324	0.0220 -0.0046
16, 10-methyl-12H-benzo[a]phenothiazine									
			1.2	0.724	0.0278	7	1.164	0.0323	0.0221 -0.0045
17, 11-methyl-12H-benzo[a]phenothiazine									
			1.2	0.724	0.0278	7	1.127	0.0324	0.0220 -0.0046

¹⁰ Antitumor activity index (Ref. 14,15): +: antitumor; -: nonantitumor.

value and REPE value of the twelve cationic species (**1S-12S**) without the nitrogen atom having the highest $Sr^{(E)}$ of the corresponding parent skeleton. The REPE value difference (ΔPB) between the parent compound's REPE value, and the REPE value of carbocation species (**1B-12B**) derived from the ring-opening of the bay-region diol-epoxide, and their carcinogenicity of a benz[c]acridine (**1**) and eleven methylbenz[c]acridines (**2-12**), was also calculated.

Both REPE values of cationic species (**1S-12S**) and REPE values of carbocation species (**1B-12B**) were apparently lower than those of the corresponding parent's REPE, for example, the REPE difference (ΔPS) between the parent compound's REPE(P) (**1P**=0.0344 β) and the REPE($Sr^{(E)}$) (**1S**=0.0304 β) of the noncarcinogenic benz[c]acridine (**1**) was 0.0040 β . The REPE difference (ΔPS) between the parent compound's REPE(P) (**2P**=0.0306 β) and REPE($Sr^{(E)}$) (**2S**=0.0272 β) of carcinogenic 7-methylbenz[c]acridine (**2**) was 0.0034 β . The REPE difference (ΔPB) between the parent compound's REPE(P) (**1P**=0.0344 β) and REPE(B) (**1B**=0.0252 β) of noncarcinogenic benz[c]acridine (**1**) was 0.0092 β . The REPE difference (ΔPB) between the parent compound's REPE(P) (**2P**=0.0306 β) and REPE(B) (**2B**=0.0223 β) of carcinogenic 7-methylbenz[c]acridine (**2**) was 0.0083 β . Among the twelve benz[c]acridines (**1-12**), their REPE differences (ΔPS =0.0037 β to 0.0040 β) of five noncarcinogenic benz[c]acridines (**1,3-6**) were higher than the REPE differences (ΔPS = 0.0033 β to 0.0034 β) of the six carcinogenic benz[c]acridines (**2,8-12**) except a noncarcinogenic 5,7-dimethylbenz[c]acridine (**7**, ΔPS =0.0033 β). Similarly, the REPE differences (ΔPB =0.0084 β to 0.0092 β) of the five noncarcinogenic benz[c]acridines (**1,3-6**) were higher than the REPE differences (ΔPB =0.0073 β to 0.0083 β) of the six carcinogenic benz[c]acridines (**2,8-12**) except a noncarcinogenic 5,7-dimethylbenz[c]acridine (**7**, ΔPB =0.0078 β). The methyl substituent (s) in the benz[c]acridine skeleton has a tendency to reduce the ΔPB value because the lower degree of the REPE differences (ΔPB =0.0073 β to 0.0085 β) of eleven methylbenz[c]acridines (**2-12**) was

(**1B**=0.0252 β) of noncarcinogenic benz[c]acridine (**1**) was 0.0092 β . The REPE difference (ΔPB) between the parent compound's REPE(P) (**2P**=0.0306 β) and REPE(B) (**2B**=0.0223 β) of carcinogenic 7-methylbenz[c]acridine (**2**) was 0.0083 β . Among the twelve benz[c]acridines (**1-12**), their REPE differences (ΔPS =0.0037 β to 0.0040 β) of five noncarcinogenic benz[c]acridines (**1,3-6**) were higher than the REPE differences (ΔPS = 0.0033 β to 0.0034 β) of the six carcinogenic benz[c]acridines (**2,8-12**) except a noncarcinogenic 5,7-dimethylbenz[c]acridine (**7**, ΔPS =0.0033 β). Similarly, the REPE differences (ΔPB =0.0084 β to 0.0092 β) of the five noncarcinogenic benz[c]acridines (**1,3-6**) were higher than the REPE differences (ΔPB =0.0073 β to 0.0083 β) of the six carcinogenic benz[c]acridines (**2,8-12**) except a noncarcinogenic 5,7-dimethylbenz[c]acridine (**7**, ΔPB =0.0078 β). The methyl substituent (s) in the benz[c]acridine skeleton has a tendency to reduce the ΔPB value because the lower degree of the REPE differences (ΔPB =0.0073 β to 0.0085 β) of eleven methylbenz[c]acridines (**2-12**) was

Table II (continued 1). Bond-order, REPEs and $Sr^{(E)}$ of phenothiazine (13) and benzo[a]phenothiazines (18-21).

Compd's No. and structure	Bond ¹⁾	Bond-order (β unit) ²⁾	REPE (P) (in β unit) ³⁾	Approximate superdelocalizability (in β unit)			$\Delta PS^8)$	$\Delta PB^9)$	Carcinogeni- city index ¹⁰⁾
				Position ⁴⁾	$Sr^{(E)} 5)$	REPE ($Sr^{(E)} 6)$			
18 , 5-oxo-5H-benzo[a]phenothiazine									
		6,6a	0.704	0.0256	13	1.279	0.0254	0.0002	- over
19 , 9- 6-methyl-5-oxo-5H-benzo[a]phenothiazine									
		6,6a	0.703	0.0232	13	1.269	0.0231	0.0001	- ±
20 , 6-hydroxy-5-oxo-5H-benzo[a]phenothiazine									
		6,6a	0.702	0.0231	13	1.253	0.0231	0	- ±
21 , 5H-benzo[a][1,4]benzothiazino [3,2-c]phenothiazine									
		1,2 (3,4)	0.685	0.0264	10 (11)	1.902	0.0295	-0.0031	- ±

⁷REPE(B): The values of REPE(B) of 5-oxo-5H-benzo[a]phenothiazines **18-21** by a convergent ω -method have not a convergency.

¹⁰Antitumor activity index (Ref. 14,15): +: antitumor; -: nonantitumor.

apparently found in comparison with the REPE difference ($\Delta PB=0.0092\beta$) of non-methylsubstituted benz[c]acridine (1). Increasing the number of the methyl (mono, di, trimethyl) substituent (s) lowered the ΔPB values (Table I) (4,12,13). This suggests that there is a relationship between percentage hypochromism and pKa value of benz[c]acridines (11).

Relationship between antitumor activity and REPEs of phenothiazine (13) and benzo[a]phenothiazines (14-21). Table II shows the bond-order, resonance energies per π -electron (REPE(P)s), approximate superdelocalizability ($Sr^{(E)}$) in parent, REPE($Sr^{(E)}$)(REPE value except the position of the highest $Sr^{(E)}$ in parent), REPE(B) (carbocation species derived from the ring-opening of the bay-region diol-epoxide), the REPE value difference (ΔPS) between the parent's REPE value and REPE value of the twelve cationic species (**13S-21S**) with lack of the sulfur atom or the ketone oxygen having the highest $Sr^{(E)}$ of the corresponding parent skeleton. The REPE value difference (ΔPB) between the parent's REPE value and REPE value of carbocation species

(**13B-21B**) derived from the ring-opening of the bay-region diol-epoxide, and their antitumor activity in one phenothiazine (13) and eight benzo[a]phenothiazines (14-21) was also calculated (Table II).

The REPE ($Sr^{(E)}$) values of the cationic species (**13S-17S**, and **21S**) were higher than the REPE(P) values of the corresponding parent compounds (**13P-17P**, and **21P**). For example, the REPE differences ($\Delta PS=-0.0060\beta$) between phenothiazine (**13P**, REPE(P)=0.0311 β) and its cationic species (**13S**, REPE ($Sr^{(E)}$)=0.0371 β) was -0.0060 β and the REPE differences ($\Delta PS=-0.0060\beta$) between 9-methyl-benzo[a]phenothiazine (**15P**, REPE(P)=0.0278 β) and its cationic species (**15S**, REPE ($Sr^{(E)}$)=0.0324 β) was -0.0046 β as well. On the other hand, the REPE($Sr^{(E)}$) values of the cationic species (**18S-20S**) were lower than the REPE(P) values of the corresponding parent compounds (**18P-20P**), whereas the REPE difference (ΔPS) between REPE(P) value of 6-hydroxy-5-oxo-5H-benzo[a]phenothiazine (**20P**, REPE (P)=0.0231 β), and REPE ($Sr^{(E)}$) value of its cationic species (**20S**, REPE ($Sr^{(E)}$)=0.0231 β) was -0.0000 β . Interestingly,

Table III. Bond-order, REPEs and $Sr^{(E)}$ of chrysene (22-29).

¹⁰Carcinogenicity index (Ref. 16): +: carcinogenic; -: noncarcinogenic.

Table III. (continued 1). Bond-order, REPEs and $Sr'(E)$ of chrysene (30-31).

Compd's No. and structure	Bond ¹⁾	Bond-order (β unit) ²⁾	REPE (P) (in β unit) ³⁾	Approximate superdelocalizability (in β unit)			$\Delta PS^8)$	$\Delta PB^9)$	Carcinogenicity index ¹⁰⁾
				Position ⁴⁾	$Sr'(E)$ ⁵⁾	REPE ($Sr'(E)$) ⁶⁾			
30, 5,6-dimethylchrysene									
		11,12 5,6	0.754 0.748	0.0312	6	0.612	0.0254	0.0241	0.0058
31, 5,11-dimethylchrysene									
		5,6 (11,12) 1,2 (10,11)	0.751 0.712	0.0312	6,12	0.594	0.0253	0.0241	0.0059
32, 5,12-dimethylchrysene									
		11,12 5,6	0.751 0.751	0.0312	6	0.618	0.0254	0.0241	0.0058

the cationic species (**1S-12S**) of carcinogenic benz[c]acridines are more unstable than their parent molecules (**1P-12P**), because the REPE(P) values (**1P-12P**) of benz[c]acridines (**1-12**) were higher than the REPE($Sr'(E)$) value of the corresponding cationic species (**1S-12S**). Conversely, the cationic species (**13S-17S**, and **21S**) of six benzo[a]phenothiazines (**13-17**, **21**) are more stable than their parent molecule's (**13P-17P**, and **21P**), because the REPE($Sr'(E)$) values of cationic benzo[a]phenothiazines (**13S-17S**, and **21S**) were higher than REPE(P) values of the corresponding parent species (**13P-17P**, and **21P**). Moreover, the three cationic 5-oxo-5H-benzo[a]phenothiazines (**18S-20S**) were also stable, because the REPE($Sr'(E)$) values (**18S-20S**) of the cationic species of 5-oxo-5H-benzo[a]phenothiazines (**18-20**) showed almost same REPE(P) values as the corresponding parent species (**18P-20P**) (Table II) (14,15).

Relationship between carcinogenic activity, and REPE (ΔPS and ΔPB) on chrysene (22-32). The effect of the substitution by a methyl group (s) on the carcinogenic activity of chrysene (**22**) and eleven methylchrysene (**23-32**) was measured. 5-Methylchrysene (**27**) and 5,11-dimethylchrysene (**31**) have the strongest carcinogenicity of chrysene (**22**) and the eleven methylchrysene (**23-32**) (16).

Table III shows the bond-order, resonance energies per π -electron (REPE(P)s), approximate superdelocalizability ($Sr'(E)$) in the parent compound, REPE($Sr'(E)$) (REPE value minus the position of the biggest $Sr'(E)$ in parent), REPE(β) (carbocation species derived from the ring-opening of the

bay-region diol-epoxide), the REPE value difference (ΔPS) between the parent compound's REPE value and the REPE value of twelve cationic species (**22S-32S**) minus the carbon atom having the highest $Sr'(E)$ of the corresponding parent skeleton. The REPE value difference (ΔPB) between the parent compound's REPE value and REPE value of the carbocation species (**22B-32B**) derived from the ring-opening of the bay-region diol epoxide, and the carcinogenic activity in one chrysene (**22**) and ten methylchrysene (**23-32**), was also calculated. Furthermore, when both the carbon at C-5 and the methyl group at C-5 were removed at the same time for the ω -calculation, their behavior of 5,6-dimethylchrysene (**30**) and 5,12-dimethylchrysene (**32**) was different from the molecular orbital conditions of two other dimethyl chrysene (**29**, **31**), as the π -electron and the numbers of the orbitals of 5,6-dimethylchrysene (**30**) and 5,12-dimethylchrysene (**32**) differed from those of two other dimethyl chrysene (**29**, **31**). Therefore, both the carbon itself at C-5 and the methyl group at C-5 were treated as a floating atom and a floating group for the ω -calculation, for the correction to the same environmental condition on four dimethylchrysene (**29-32**) (Table III).

The REPE($Sr'(E)$) values of the cationic species (**22S-32S**) were lower than the REPE(P) values of the corresponding parent compounds (**22P-32P**). For example, the REPE differences (ΔPS) between parent 5,11-dimethylchrysene (**31**, REPE(P)=0.0312 β) and its cationic species (**31**, REPE($Sr'(E)$)=0.0253 β) was 0.0059 β and the REPE differences (ΔPS) between 1-methylchrysene (**23**, REPE(P)=0.0344 β)

and its cationic species (**23**, REPE(Sr'(E))=0.0275 β) was 0.0069 β .

As with to benz[c]acridines, the cationic species (**22S-32S**) and carbocation species (**22B-32B**) of chrysenes (**22-32**) were more unstable than their parent molecules (**22P-32P**), because the REPE(P) values (**1P-12P**) of benz[c]acridines (**1-12**) were higher than the REPE(Sr'(E)) value of the corresponding cationic species (**1S-12S**). It is thus concluded that the REPE difference value (Δ PS) lower than 0.0066 β is necessary for the carcinogenicity of methylchrysenes, except 4-methylchrysenes (**26**, Δ PS=0.0068 β) to be apparent.

The methyl group at the C-6 or C-12 positions was treated as floating atom, which was not bonded to the carbon atom at the 6 or 12 position.

References

- Motohashi N, Sasaki Y, Wakabayashi Y, Sakagami H, Molnár J and Kurihara T: Relationship between π -electron distribution and anticancer activity of benzo[a]phenothiazines. *Anticancer Res* **12**: 1423-1426, 1992.
- Kurihara T, Sakagami H, Molnár J and Motohashi N: Quantumchemical structure of carcinogenic benz[c]acridines. *Anticancer Res* **14**: 1811-1822, 1994.
- Dipple A: Polycyclic aromatic hydrocarbon carcinogenesis. In: Hary RG (ed.): "Polycyclic Hydrocarbons and Carcinogenesis". Washington DC. American Chemical Society. pp 1-17, 1985.
- Lacassagne A, Buu-Höi NP, Daudel R and Zajdela F: The relation between carcinogenic activity and the physical and chemical properties of angular benzacridines. *Adv Cancer Res* **4**: 315-369, 1956.
- a) Chang RJ, Levin W, Wood AW, Kumar S, Yagi H, Jerina DM, Lehr RE and Conney AH: Tumorigenicity of dihydrodiols and diol-epoxides of benz[c]acridine in newborn mice. *Cancer Res* **44**: 5161-5164, 1984; b) Chang RJ, Levin W, Wood AW, Shirai N, Ryan AJ, Duke CC, Jerina DM, Holder GM and Conney AH: High tumorigenicity of the 3,4-dihydrodiol of 7-methylbenz[c]acridine on mouse skin and in newborn mice. *Cancer Res* **46**: 4552-4555, 1986; c) Levin W, Wood AW, Chang RL, Kumar S, Yagi H, Jerina DM, Lehr RE and Conney AH: Tumor-initiating activity of benz[c]acridine and twelve of its derivatives on mouse skin. *Cancer Res* **43**, 4625-4628, 1983.
- Walker BA, Rogan EG and Cromwell NH: Mutagenicity of selected functionalized benz[c]acridines and a benz[a]phenazine in the *Salmonella typhimurium*/microsome assay. *Anticancer Res* **4**, 399-402, 1984.
- Dipple A, Moschel RC, and Bigger CAH: Polynuclear aromatic carcinogens. In: Searle CE, ed, *Chemical Carcinogens*. Vol. 1, American Chemical Society, 1984, pp 41-163.
- Kurihara T, Motohashi N, Shimizu A, Pang GL and Molnár J: Relationship between resonance energy per π -electron and carcinogenicity of arenes. "accepted" *Anticancer Res*, 1996.
- a) Streitwieser A: Molecular orbital theory for organic chemists. p115, John Wiley and Sons, Inc., New York, N.Y., 1960; b) Aihara J: A new definition of Dewar-type resonance energies. *J Amer Chem Soc* **98**: 2750-2758, 1976; c) Aihara J: Resonance energies of nonbenzenoid hydrocarbons. *Bull Chem Soc Jpn* **51**: 3540-3543, 1978; d) Aihara J: Graph-theoretical formulation of London diamagnetism. *J Amer Chem Soc* **101**: 5913-5917, 1979; e) Aihara J and Horikawa T: Graph-theoretical formula for ring currents induced in a polycyclic conjugated system. *Bull Chem Soc Jpn* **56**: 1853-1854, 1983.
- Motohashi N, Kurihara T, Sakagami H and Molnár J: Relationship between resonance energy and carcinogenic activity of benz[c]acridines. *Anticancer Res* **12**: 2105-2108, 1992.
- Okano T, Horie T, Koike T, Motohashi N, Watanabe Y and Nishimiya Y: Electronic interaction of carcinogenic and noncarcinogenic benz[c]acridines and DNA. *Gann* **66**: 529-537, 1975.
- Badger GM: The carcinogenic hydrocarbons: chemical constitution and carcinogenic activity. *Brit J Cancer* **2**: 309-350, 1948.
- Buu-Höi NP: Carcinogenic substances. *Med Grundlagenforsch* **2**: 465-550, 1959.
- Motohashi N: Test for antitumor activities of phenothiazines and phenoxazines. *Yakugaku Zasshi* **103**: 364-371, 1983.
- Motohashi N: Antitumor activities of phenothiazines. In: Gupta RR (ed), *Phenothiazines and 1,4-benzothiazines*. Chemical and biomedical aspects. Elsevier, Amsterdam, 1988, pp 705-774.
- Flesher JW and Myers SR: Rules of molecular geometry for predicting carcinogenic activity of unsubstituted polynuclear aromatic hydrocarbons. *Teratogenesis Carcinogenesis Mutagenesis* **11**: 41-54, 1991.

Received February 13, 1996

Accepted April 2, 1996