INVOLUTIONS ON A SURFACE OF GENERAL TYPE WITH \(p_g = q = 0, \ K^2 = 7 \)

YONGNAM LEE and YONGJOO SHIN

<table>
<thead>
<tr>
<th>Citation</th>
<th>Osaka Journal of Mathematics. 51(1): 121-139</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue Date</td>
<td>2014-01</td>
</tr>
<tr>
<td>Textversion</td>
<td>Publisher</td>
</tr>
<tr>
<td>Right</td>
<td>©Departments of Mathematics of Osaka University and Osaka City University.</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/29183</td>
</tr>
<tr>
<td>Is Identical to</td>
<td>https://doi.org/10.18910/29183</td>
</tr>
<tr>
<td>Relation</td>
<td>The OJM has been digitized through Project Euclid platform http://projecteuclid.org/ojm starting from Vol. 1, No. 1.</td>
</tr>
</tbody>
</table>

SURE: Osaka City University Repository

https://dlisv03.media.osaka-cu.ac.jp/il/meta_pub/G0000438repository
INVOLUTIONS ON A SURFACE OF GENERAL TYPE WITH $p_g = q = 0, K^2 = 7$

YONGNAM LEE and YONGJOO SHIN

(Received April 22, 2011, revised May 15, 2012)

Abstract

In this paper we study involutions on minimal surfaces of general type with $p_g = q = 0$ and $K^2 = 7$. We focus on the classification of the birational models of the quotient surfaces and their branch divisors induced by an involution.

1. Introduction

Algebraic surfaces of general type with vanishing geometric genus have a very old history and have been studied by many mathematicians. Since there are too many to mention here, we refer a very recent survey [1]. Nonetheless, a classification is still lacking and it can be considered one of the most difficult current problems in the theory of algebraic surfaces.

In the 1930s Campedelli [5] constructed the first example of a minimal surface of general type with $p_g = 0$ using a double cover. He used a double cover of \mathbb{P}^2 branched along a degree 10 curve with six points, not lying on a conic, all of which are a triple point with another infinitely near triple point. After his construction, the covering method has been one of main tools for constructing new surfaces.

Surfaces of general type with $p_g = q = 0, K^2 = 1$, and with an involution have studied by Keum and the first named author [11], and completed later by Calabri, Ciliberto and Mendes Lopes [3]. Also surfaces of general type with $p_g = q = 0, K^2 = 2$, and with an involution have studied by Calabri, Mendes Lopes, and Pardini [4]. Previous studies motivate the study of surfaces of general type with $p_g = q = 0, K^2 = 7$, and with an involution.

We know that a minimal surface of general type with $p_g = q = 0$ satisfies $1 \leq K^2 \leq 9$. One can ask whether there is a minimal surface of general type with $p_g = q = 0$, and with an involution whose quotient is birational to an Enriques surface. Indeed, there are examples that are minimal surfaces of general type with $p_g = q = 0$, and $K^2 = 1, 2, 3, 4$ constructed by a double cover of an Enriques surface in [9], [11], [12], [17]. On the other hand, there is no a minimal surface of general type with $p_g = q = 0$ and $K^2 = 9$ (resp. 8) having an involution whose quotient is birational to an Enriques surface.
surface by Theorem 4.3 (resp. 4.4) in [8]. Therefore, it is worth to classify the possible branch divisors and to find an example whose quotient is birational to an Enriques surface in the cases $K^2 = 5, 6, 7$. We focus on the classification of branch divisors induced by an involution instead of finding examples. We have only two possible cases by excluding all other cases in the case $K^2 = 7$. Precisely, we prove the following in Section 4.

Theorem. Let S be a minimal surface of general type with $p_g(S) = q(S) = 0$, $K^2_S = 7$ having an involution σ. Suppose that the quotient S/σ is birational to an Enriques surface. Then the number of fixed points is 9, and the fixed divisor is a curve of genus 3 or consists of two curves of genus 1 and 3. Furthermore, S has a 2-torsion element.

Let S be a minimal surface of general type with $p_g(S) = q(S) = 0$ having an involution σ. There is a commutative diagram:

$$
v \xrightarrow{\epsilon} S \\
\tilde{\pi} \downarrow \quad \downarrow \pi \\
W \xrightarrow{\eta} \Sigma.
$$

In this diagram π is the quotient map induced by the involution σ. And ϵ is the blow-up of S at k isolated fixed points of σ. Also, $\tilde{\pi}$ is induced by the quotient map π and η is the minimal resolution of the k double points made by the quotient map π. And, there is a fixed divisor R of σ on S which is a smooth, possibly reducible, curve. We set $R_0 := \epsilon^*(R)$ and $B_0 := \tilde{\pi}(R_0)$. Let Γ_i be an irreducible component of B_0. When we write $\Gamma_i \cap (m, n)$, m means $p_a(\Gamma_i)$ and n is Γ_i^2.

In the paper, we give the classification of the birational models of the quotient surfaces and their branch divisors induced by an involution when $K^2_S = 7$. Precisely, we have the following table of the classification.

If $k = 11$, the bicanonical map is composed with the involution. We will omit the classification of B_0 for $k = 11$ because there are detailed studies in [2], [3] and [14].

The paper is organized as follows. In Section 3 we provide the classification of branch divisors B_0, and birational models of quotient surfaces W for each possible k. Our approach follows by the same approach as in [3], [4] and [8]. But we have to face different problems with respect to previous known results. Section 4 is devoted to the study when W is birational to an Enriques surface. Firstly, we see that an Enriques surface W', obtained by contracting two (-1)-curves from W, has eight disjoint (-2)-curves. Then via detailed study of Enriques surfaces with eight (-2)-curves, only two possible cases of branch divisors are remained by excluding all other cases. Section 5 is devoted to the study of the branch divisors of an example given in [14].
Even if we are not able to construct a new example of such surfaces which are double covers of surfaces birational to an Enriques surface or surfaces of general type, our work will help to find such an example and to give the classification of these surfaces.

2. Notation and conventions

In this section we fix the notation which will be used. We work over the field of complex numbers in this paper.

Let X be a smooth projective surface. Let Γ be a curve in X and $\hat{\Gamma}$ be the normalization of Γ. We set:

- K_X: the canonical divisor of X;
- $NS(X)$: the Néron–Severi group of X;
- $\rho(X)$: the rank of $NS(X)$;
- $k(X)$: the Kodaira dimension of X;
- $q(X)$: the irregularity of X, that is, $h^1(X, \mathcal{O}_X)$;
- $p_g(X)$: the geometric genus of X, that is, $h^0(X, \mathcal{O}_X(K_X))$;
- $p_a(\Gamma)$: the arithmetic genus of Γ, that is, $\Gamma(\Gamma + K_X)/2 + 1$;
- $p_g(\Gamma)$: the geometric genus of Γ, that is, $h^0(\hat{\Gamma}, \mathcal{O}_{\hat{\Gamma}}(K_{\hat{\Gamma}}))$;
- \equiv: the linear equivalence of divisors on a surface;

Table

<table>
<thead>
<tr>
<th>k</th>
<th>K^2_W</th>
<th>B_0</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>Γ_0</td>
<td>minimal of general type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1,-2)$</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Γ_0</td>
<td>minimal of general type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(3,2)$</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>Γ_0</td>
<td>minimal properly elliptic, or of general type whose minimal model has $K^2 = 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(2,-2)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Gamma_0 + (1,-2)$</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-2</td>
<td>Γ_0</td>
<td>$\kappa(W) \leq 1$, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(4,2) + (0,-4)$</td>
<td>if W is birational to an Enriques surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(3,-2)$</td>
<td>then $B_0 = \Gamma_0 + \Gamma_1 + \Gamma_1$ or Γ_0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Γ_0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(4,4) + (0,-6)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Γ_0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(3,0) + (1,-2)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Γ_0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(5,2) + (1,-4)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Γ_0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(2,-2) + (2,0)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Γ_0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(3,2) + (1,-2) + (1,-2)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Γ_0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(2,0) + (1,-2)$</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-4</td>
<td></td>
<td>rational surface</td>
</tr>
</tbody>
</table>

\[\sim: \text{ the numerical equivalence of divisors on a surface;}\]
\[\Gamma: (m, n) \text{ or } (m, n)'; m \text{ is } p_g(\Gamma) \text{ and } n \text{ is the self intersection number of } \Gamma;\]
\[(-n)\text{-curve: a smooth irreducible rational curve with the self intersection number } -n,\]
in particular we call that a \((-2)\text{-curve is nodal.}\]
We usually omit the sign \(\cdot\) of the intersection product of two divisors on a surface.

Let \(S\) be a minimal surface of general type with \(p_g(S) = q(S) = 0\) having an involution \(\sigma\). Then there is a commutative diagram:

\[
\begin{array}{ccc}
V & \xrightarrow{\epsilon} & S \\
\downarrow{\tilde{\pi}} & & \downarrow{\pi} \\
W & \xrightarrow{\eta} & \Sigma.
\end{array}
\]

In the above diagram \(\pi\) is the quotient map induced by the involution \(\sigma\). And \(\epsilon\) is the blowing-up of \(S\) at \(k\) isolated fixed points arising from the involution \(\sigma\). Also, \(\tilde{\pi}\) is induced by the quotient map \(\pi\) and \(\eta\) is the minimal resolution of the \(k\) double points made by the quotient map \(\pi\). We denote the \(k\) disjoint \((-1)\)-curves on \(V\) (resp. the \(k\) disjoint \((-2)\)-curves on \(W\)) related to the \(k\) disjoint isolated fixed points on \(S\) (resp. the \(k\) double points on \(\Sigma\)) as \(E_i\) (resp. \(N_i\), \(i = 1, \ldots, k\). And, there is a fixed divisor \(R\) of \(\sigma\) on \(S\) which is a smooth, possibly reducible, curve. So we set \(R_0 := \epsilon^*(R)\) and \(B_0 := \tilde{\pi}(R_0)\).

The map \(\tilde{\pi}\) is a flat double cover branched on \(\tilde{B} := B_0 + \sum_{i=1}^k N_i\). Thus there exists a divisor \(L\) on \(W\) such that \(2L \equiv \tilde{B}\) and

\[\tilde{\pi}_*\mathcal{O}_V = \mathcal{O}_W \oplus \mathcal{O}_W(-L).\]

Moreover, \(K_V \equiv \tilde{\pi}^*(K_W + L)\) and \(K_S \equiv \pi^*K_\Sigma + R\).

3. Classification of branch divisors and quotient surfaces

In this section we focus on the classification of the birational models of the quotient surfaces and their branch divisors induced by an involution.

Since \(\epsilon^*(2K_S) = \tilde{\pi}^*(2K_W + B_0)\), the divisor \(2K_W + B_0\) is nef and big, and \((2K_W + B_0)^2 = 2K_S^2\). We begin with recalling the results in [3] and [8].

Proposition 3.1 (Proposition 3.3 and Corollary 3.5 in [3]). Let \(S\) be a minimal surface of general type with \(p_g = 0\) and let \(\sigma\) be an involution of \(S\). Then

(i) \(k \geq 4;\)
(ii) \(K_WL + L^2 = -2;\)
(iii) \(h^0(W, \mathcal{O}_W(2K_W + L)) = K_W^2 + K_WL;\)
(iv) \(K_W^2 + K_WL \geq 0;\)
(v) \(k = K_S^2 + 4 - 2h^0(W, \mathcal{O}_W(2K_W + L));\)
(vi) \(h^0(W, \mathcal{O}_W(2K_W + B_0)) = K_S^2 + 1 - h^0(W, \mathcal{O}_W(2K_W + L));\)
(vii) $K_W^3 \geq K_V^2$.

Proposition 3.2 (Corollary 3.6 in [3]). Let S be a minimal surface of general type with $p_g = 0$, let $\varphi : S \to \mathbb{P} K_S^2$ be the bicanonical map of S and let σ be an involution of S. Then the following conditions are equivalent:

(i) φ is composed with σ;
(ii) $h^0(W, \mathcal{O}_W(2K_W + L)) = 0$;
(iii) $K_W(K_W + L) = 0$;
(iv) the number of isolated fixed points of σ is $k = K_S^2 + 4$.

By (i) and (v) of Proposition 3.1, the possibilities of k are 5, 7, 9, 11 if $K_S^2 = 7$. In particular, if $k = 11$, the bicanonical map φ is composed with the involution, which is treated by Proposition 3.2.

Lemma 3.3 (Theorem 3.3 in [8]). Let W be a smooth rational surface and let $N_1, \ldots, N_k \subset W$ be disjoint nodal curves. Then

(i) $k \leq \rho(W) - 1$, and equality holds if and only if $W = \mathbb{F}_2$;
(ii) if $k = \rho(W) - 2$ and $\rho(W) \geq 5$, then k is even.

Lemma 3.4 (Proposition 4.1 in [8] and Remark 4.3 in [10]). Let W be a surface with $p_g(W) = q(W) = 0$ and $\kappa(W) \geq 0$, and let $N_1, \ldots, N_k \subset W$ be disjoint nodal curves. Then

(i) $k \leq \rho(W) - 2$ unless W is a fake projective plane;
(ii) if $k = \rho(W) - 2$, then W is minimal unless W is the blowing-up of a fake projective plane at one point or at two infinitely near points.

For simplicity of notation, we let D stand for $2K_W + B_0$.

Theorem 3.5. Let S be a minimal surface of general type with $p_g(S) = 0$ and $K_S^2 = 7$ having an involution σ. Then

(i) $D^2 = 14$;
(ii) if $k = 11$, then $K_WD = 0, K_W^2 = -4$, and W is a rational surface;
(iii) if $k = 9$, then $K_WD = 2, K_W^2 = -2$, and $\kappa(W) \leq 1$;
(iv) if $k = 7$, then $K_WD = 4, 0 \leq K_W^2 \leq 1$, and $\kappa(W) \geq 1$. Furthermore, if W is properly elliptic then $K_W^2 = 0$. If $K_W^2 = 1$ then W is minimal of general type. And if $K_W^2 = 0$ and W is of general type then $K_W^2 = 1$ where W' is the minimal model of W;
(v) if $k = 5$, then $K_WD = 6, K_W^2 = 2$, and W is minimal of general type.

Proof. (i) This follows by $e^*(2K_S) \equiv \pi^*(D)$ and $K_S^2 = 7$.

(ii) Firstly, $K_WD = 2K_W(K_W + L) = 0$ by Proposition 3.2. Secondly, $K_W^2 = K_S^2 - k = 7 - 11 = -4$. We have thus $K_W^2 \geq -4$ by (vii) of Proposition 3.1. Finally,
Also, we can write

\[K_W^2 \leq 0 \]

by the algebraic index theorem because \(K_W D = 0 \) and \(D \) is nef and big. Since \(K_W D = 0 \), \(W \) can be a rational surface or birational to an Enriques surface. Enriques surface is excluded by Theorem 3 in [19]. Also, by Lemma 3.3 \(k \leq \rho(W) - 3 \), and we have thus \(\rho(W) \geq 14 \). Therefore \(K_W^2 = -4 \).

(iii) Firstly, \(K_W D = 2K_W(K_W + L) = 2 \) follows by (iii) and (v) of Proposition 3.1. Secondly, \(K_V^2 = K_S^2 - k = 7 - 9 = -2 \). We have thus \(K_S^2 \geq -2 \) by (vii) of Proposition 3.1. Finally, the algebraic index theorem yields \(0 \geq (7K_W - D)^2 = 49K_W^2 - 14K_W D + D^2 = 49K_W^2 - 14 \), and we have thus \(K_S^2 \leq 0 \).

If \(W \) is a rational surface then by Lemma 3.3 \(k \leq \rho(W) - 3 \), and so \(\rho(W) \geq 12 \). Therefore \(K_W^2 = -2 \). If \(\kappa(W) \geq 0 \) then by Lemma 3.4 \(\rho(W) \geq 11 \). If \(\rho(W) = 11 \) then \(W \) is minimal. It gives a contradiction because \(K_W^2 = -1 \). Therefore \(\rho(W) = 12 \) and \(K_W^2 = -2 \).

Moreover, \(W \) is not of general type; suppose \(W \) is of general type, then we consider a birational morphism \(t : W \rightarrow W' \) such that \(W' \) is the minimal model of \(W \). Also, we can write \(K_W = t^*(K_W') + E \), \(E > 0 \) since \(K_W^2 \leq 0 \). Then \(Dt^*(K_W') = 2 \); firstly, \(Dt^*(K_W') \leq 2 \) because \(2 = DK_W = Dt^*(K_W') + DE \) and \(D \) is nef. Secondly, \(Dt^*(K_W') \geq 2 \) follows from that \(Dt^*(K_W') = 2K_W t^*(K_W') + B_{01} t^*(K_W') = 2(t^*(K_W') + E)t^*(K_W') + B_{01} t^*(K_W') = 2K_W^2 + B_{01} t^*(K_W') \geq 2 \) because \(K_W^2 > 0 \) and \(K_W \) is nef.

The algebraic index theorem yields \(0 \geq (7t^*(K_W') - D)^2 = 49t^*(K_W')^2 - 14Dt^*(K_W') + D^2 = 49K_W^2 - 28 + 14 \). We have thus \(K_W^2 \leq 0 \), which gives a contradiction.

(iv) Since \(K_V^2 = K_S^2 - k = 0 \), \(K_W^2 \geq 0 \). \(K_W D = 4 \) yields \(K_W^2 \leq 1 \). \(K_W^2 \geq 0 \) and \(K_W D = 4 \) imply that \(W \) is not birational to an Enriques surface. Again \(k = 7 \) implies that if \(W \) is a rational surface then \(K_W^2 = 0 \). But then \(h^0(W, O_W(-K_W)) > 0 \) and this is impossible because \(D \) is nef.

If \(W \) is properly elliptic then \(K_W^2 = 0 \). And if \(K_W^2 = 1 \) then \(W \) is a minimal surface of general type by Lemma 3.4.

Now suppose that \(K_W^2 = 0 \) and \(W \) is of general type. Then we consider a birational morphism \(t : W \rightarrow W' \) such that \(W' \) is the minimal model of \(W \). Suppose \(K_W^2 \geq 2 \).

We write \(K_W = t^*(K_W') + E \), \(E > 0 \). Firstly, \(Dt^*(K_W') \leq 4 \) because \(K_W D = 4 \). Secondly, \(Dt^*(K_W') \geq 4 \): \(Dt^*(K_W') = 2K_W t^*(K_W') + B_{01} t^*(K_W') = 2(t^*(K_W') + E)t^*(K_W') + B_{01} t^*(K_W') = 2K_W^2 + B_{01} t^*(K_W') \geq 4 \) since we suppose \(K_W^2 \geq 2 \) and \(K_W^2 \) is nef.

Therefore \(Dt^*(K_W') = 4 \). Then by the algebraic index theorem and \(D^2 = 14 \), \(0 \geq (7t^*(K_W') - 2D)^2 = 49t^*(K_W')^2 - 28Dt^*(K_W') + 4D^2 = 49K_W^2 - 112 + 56 \), which gives a contradiction.

(v) Since \(K_V^2 = 2 \), \(K_W^2 \geq 2 \) and so \(W \) is either a rational surface or a surface of general type. But if it is a rational surface then \(h^0(W, O_W(-K_W)) > 0 \) gives a contradiction. Also, \(K_W D = 6 \) and the algebraic index theorem implies that \(K_W^2 \leq 2 \).

Now we know that \(W \) is of general type with \(K_W^2 = 2 \), it is enough to prove that \(W \) is minimal. Suppose \(W \) is not minimal. Then we consider a birational morphism
The case \(t: W \to W' \) such that \(W' \) is the minimal model of \(W \). Also, we can write \(K_W \equiv t^*(K_{W'}) + E, \ E > 0 \). Firstly, \(Dt^*(K_{W'}) \leq 6 \) because \(K_W D = 6 \), and \(K_{W'}^2 \geq 3 \). Secondly, \(Dt^*(K_{W'}) \geq 6: \) \(Dt^*(K_{W'}) = 2K_W t^*(K_{W'}) + B_0 t^*(K_{W'}) = 2t^*(K_{W'}) + E)t^*(K_{W'}) + B_0 t^*(K_{W'}) = 2K_{W'}^2 + B_0 t^*(K_{W'}) \geq 6 \) since \(K_{W'}^2 \geq 3 \) and \(K_{W'} \) is nef.

Therefore \(Dt^*(K_{W'}) = 6 \). Then by the algebraic index theorem and \(D^2 = 14, \ 0 \geq (7t^*(K_{W'}) - 3D)^2 = 49t^*(K_{W'})^2 - 42Dt^*(K_{W'}) + 9D^2 = 49K_{W'}^2 - 252 + 126, \) which gives a contradiction.

We now study the possibilities of an irreducible component \(\Gamma \subset B_0 \) for each number of isolated fixed points. Let \(\Gamma_V \) be the preimage of \(\Gamma \) in the double cover \(V \) of \(W \). We do not consider the case \(k = 11 \) because it is already treated in [2], [3] and [14].

Lemma 3.6. For any irreducible component \(\Gamma \subset B_0 \) on \(W \), \(2K_V \Gamma_V = \Gamma D \), where \(\tilde{\varpi}^* \Gamma \equiv 2\Gamma_V \).

Proof. We have \(2\Gamma D = \tilde{\varpi}^*(\Gamma) \tilde{\varpi}^*(D) = 2\Gamma_V \varpi^*(2K_S) \). We have thus \(\Gamma D = \Gamma_V \varpi^*(2K_S) \). On the other hand, we know that \(\Gamma_V \varpi^*(2K_S) = 2K_V \Gamma_V \) because \(\Gamma_V \cap (\text{exceptional locus of } \varpi) = \emptyset \). Therefore \(2K_V \Gamma_V = \Gamma D \).

Remark 3.7. By Lemma 3.6, \(\Gamma D \) should be even, and if \(\Gamma D = 0 \) then \(\Gamma \) is a \((-4)\)-curve.

3.1. Classification of \(B_0 \) for \(k = 9 \). In this case, \(B_0 D = 10 \) because \(B_0 D = (D - 2K_W)D = 14 - 4 = 10 \). So \(\Gamma D = 10, 8, 6, 4, \) or \(2 \).

1) The case \(\Gamma D = 10 \). Since \(D^2 = 14 \) and \(D \) is nef and big, \(0 \geq (7\Gamma - 5D)^2 = 49\Gamma^2 - 70\Gamma D + 25D^2 = 49\Gamma^2 - 350 \) by the algebraic index theorem. That is, \(\Gamma^2 \leq 7 \). Thus we get \(\Gamma_V^2 \leq 3 \) because \(2\Gamma_V^2 = \Gamma^2 \). Moreover, we know that \(0 \leq p_a(\Gamma_V) = 1 + (1/2)(\Gamma_V^2 + K_V \Gamma_V) = 1 + (1/2)(\Gamma_V^2 + 5) \) by Lemma 3.6. Thus \(-7 \leq \Gamma_V^2 \leq 3 \). By the genus formula, \(\Gamma_V^2 = -7, -5, -3, -1, 1, 3 \).

1) The case \(\Gamma_V^2 = -7 \): in this case, \(p_a(\Gamma_V) = 0 \). So \(\Gamma: (0, -14) \). Then if we write that \(B_0 = \Gamma_0 + \Gamma_1 + \cdots + \Gamma_l \) such that \(\Gamma_0 = \Gamma \) and \(\Gamma_i \) are \((-4)\)-curves for each \(i = 1, \ldots, l \), then

\[
6 = 2 - 2K_0^2 = K_0(D - 2K_W) = K_W B_0 = 12 + 2l.
\]

We get a contradiction because \(l = -3 \).

2) The cases \(\Gamma_V^2 = -5, -3 \): similar arguments as the case (1) give contradictions because \(l \leq 0 \).

3) The case \(\Gamma_V^2 = -1 \): we get \(p_a(\Gamma_V) = 3 \). So \(\Gamma: (3, -2) \) and \(l = 0 \).

4) The case \(\Gamma_V^2 = 1 \): here, \(p_a(\Gamma_V) = 4 \). So \(\Gamma: (4, 2) \) and \(l = 1 \).

5) The case \(\Gamma_V^2 = 3 \): lastly, \(p_a(\Gamma_V) = 5 \). So \(\Gamma: (5, 6) \) and \(l = 2 \).

We have thus the following possibilities of \(B_0 \) in the case \(\Gamma D = 10 \).

\[
B_0: \Gamma_0 (5, 6) + \Gamma_1 (0, -4) + \Gamma_2 (0, -4) + \Gamma_3 (0, -4) + \Gamma_4 (3, -2).
\]
Remark 3.8. \(P_0^{(5,0)} + P_1^{(0,-4)} + P_2^{(0,-4)} \) cannot occur by Proposition 2.1.1 of [16] because a smooth rational curve in \(B_0 \) corresponds to a smooth rational curve on \(S \).

2) The case \(\Gamma_0 D = 8 \) and \(\Gamma_1 D = 2 \). We can use the similar argument as the above Section 3.1. 1) for each of \(\Gamma_0 D \) and \(\Gamma_1 D \). However, we have to consider \(B_0 = \Gamma_0 + \Gamma_1 + \cdots + \Gamma_i' \) to get the possibilities for \(B_0 \), where \(\Gamma_i' : (0, -4) \) for all \(i \in \{1, 2, \ldots, l\} \) if those exist. Then we get the following possible cases.

\[
B_0: \gamma_0^{(4,4)} + \gamma_1^{(1,2)} + \gamma_2^{(0,4)}, \quad \gamma_0^{(4,4)} + \gamma_1^{(0,6)}, \quad \gamma_0^{(3,0)} + \gamma_1^{(1,2)}.
\]

Now, we give all remaining cases by the similar argument as the above Section 3.1. 2).

3) The case \(\Gamma_0 D = 6 \) and \(\Gamma_1 D = 4 \).

\[
B_0: \gamma_0^{(3,2)} + \gamma_1^{(2,0)} + \gamma_2^{(0,4)}, \quad \gamma_0^{(3,2)} + \gamma_1^{(1,2)}, \quad \gamma_0^{(0,6)} + \gamma_1^{(2,0)}.
\]

\(\gamma_0^{(3,2)} + \gamma_1^{(2,0)} + \gamma_2^{(0,4)} \) cannot happen. Indeed, the intersection number matrix of \(K_W \), \(\Gamma_0 \), \(\Gamma_1 \), and \(\Gamma_2 \) is nondegenerate. Thus \(\rho(W) \geq 13 \) which is a contradiction since \(\rho(W) = 12 \) by \(K_W^2 = -2 \).

4) The case \(\Gamma_0 D = 6 \), \(\Gamma_1 D = 2 \) and \(\Gamma_2 D = 2 \).

\[
B_0: \gamma_0^{(3,2)} + \gamma_1^{(1,2)} + \gamma_2^{(1,2)}.
\]

5) The case \(\Gamma_0 D = 4 \), \(\Gamma_1 D = 4 \) and \(\Gamma_2 D = 2 \).

\[
B_0: \gamma_0^{(2,0)} + \gamma_1^{(2,0)} + \gamma_2^{(1,2)}.
\]

6) The case \(\Gamma_0 D = 4 \), \(\Gamma_1 D = 2 \), \(\Gamma_2 D = 2 \) and \(\Gamma_3 D = 2 \). We get a contradiction by the similar argument in Section 3.1. 1) (1).

7) The case \(\Gamma_0 D = 2 \), \(\Gamma_1 D = 2 \), \(\Gamma_2 D = 2 \), \(\Gamma_3 D = 2 \) and \(\Gamma_4 D = 2 \). This case is also ruled out by the similar argument in Section 3.1. 1) (1).

By Theorem 3.5 and from the above classification, we get Table 1:

3.2. Classification of \(B_0 \) for \(k = 7 \).

In this case, \(B_0 D = 6 \). So \(\Gamma D \) can be 6, 4, 2. By using similar arguments as the above Section 3.1, we get the following tables related to \(K_W^2 \) and \(B_0 \) for each case of \(\Gamma D \).

1) The case \(\Gamma D = 6 \).

<table>
<thead>
<tr>
<th>(K_W^2)</th>
<th>(B_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\gamma_0^{(3,2)})</td>
</tr>
<tr>
<td>0</td>
<td>(\gamma_0^{(3,2)} + \gamma_1^{(0,4)})</td>
</tr>
</tbody>
</table>
Table 1. Classifications of K_W^2, B_0 and W for $k = 9$.

<table>
<thead>
<tr>
<th>K_W^2</th>
<th>B_0</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>$\Gamma_0^4 + \frac{\Gamma_1^3}{(0,-4)}$</td>
<td>$\kappa(W) \leq 1$</td>
</tr>
<tr>
<td></td>
<td>$\Gamma_0^3 + (3,-2)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Gamma_0^2 (4,4) + (1,-2) + (0,-4)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Gamma_0^2 + (1,-6)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Gamma_0^1 + (1,-2)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Gamma_0^0 + (1,-4)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Gamma_0^1 + (2,0)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Gamma_0^0 (5,2) + (1,-2) + (1,-2)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Gamma_0^0 + (2,0) + (1,-2)$</td>
<td></td>
</tr>
</tbody>
</table>

Lemma 3.9. $B_0 = \frac{\Gamma_0^4}{(3,2)} + \frac{\Gamma_1^3}{(0,-4)}$ is not possible.

Proof. By Theorem 3.5, W is minimal properly elliptic, or of general type whose minimal model W' has $K_W^2 = 1$. If W is minimal properly elliptic, then we get a contradiction by Miyaoka’s theorem in [16] because W has seven disjoint (-2)-curves and one (-4)-curve.

We now suppose that W is of general type whose minimal model W' has $K_W^2 = 1$. We consider a birational morphism $t: W \rightarrow W'$, and $K_W = t^{*}(K_{W'}) + E$, where E is the unique (-1)-curve. E cannot meet seven disjoint N_i because $K_{W'} t(N_i) = -N_i E$ and $K_{W'}$ is nef. And $\Gamma_1 E \leq 1$ because $K_W B_0 = 4$, $K_W \Gamma_0 = 2$, and $t^{*}(K_{W'}) \Gamma_1 \geq 1$. Then, Miyaoka’s theorem [16] again gives a contradiction because W' has seven disjoint (-2)-curves, and one (-4)-curve or one (-3)-curve.

\square

2) The case $\Gamma_0 D = 4$ and $\Gamma_1 D = 2$.

<table>
<thead>
<tr>
<th>K_W^2</th>
<th>B_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\frac{\Gamma_0^2}{(2,0)} + \frac{\Gamma_1^0}{(1,-2)}$</td>
</tr>
</tbody>
</table>

3) The case $\Gamma_0 D = 2$, $\Gamma_1 D = 2$ and $\Gamma_2 D = 2$.

This case is not possible by the similar argument in Section 3.1. 1) (1).

3.3. Classification of B_0 for $k = 5$. In this case, $B_0 D = 2$. So ΓD can be 2. By using similar arguments as the above Section 3.1, we get the following table related
Table 2. Classifications of K_W^2, B_0 and W for $k = 7$.

<table>
<thead>
<tr>
<th>K_W^2</th>
<th>B_0</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{g_0}{(3,2)}$</td>
<td>minimal of general type</td>
</tr>
<tr>
<td>0</td>
<td>$\frac{g_0}{(2,-2)}$, $\frac{g_0}{(2,0)} + \frac{g_1}{(1,-2)}$</td>
<td>minimal properly elliptic, or of general type whose minimal model has $K^2 = 1$</td>
</tr>
</tbody>
</table>

Table 3. Classifications of K_W^2, B_0 and W for $k = 5$.

<table>
<thead>
<tr>
<th>K_W^2</th>
<th>B_0</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$\frac{g_0}{(1,-2)}$</td>
<td>of general type</td>
</tr>
</tbody>
</table>

to K_W^2 and B_0 for ΓD.

4. Quotient surface birational to an Enriques surface

In this section we treat the case when W is birational to an Enriques surface.

Theorem 4.1. Let S be a minimal surface of general type with $p_g(S) = 0$ and $K_S^2 = 7$ having an involution σ. If W is birational to an Enriques surface then $k = 9$, $K_W^2 = -2$, and the branch divisor $B_0 = \frac{g_0}{(3,0)} + \frac{g_1}{(1,-2)}$ or $\frac{g_0}{(3,-2)}$. Furthermore, S has a 2-torsion element.

Suppose W is birational to an Enriques surface. Then by Theorem 3.5, we have $k = 9$ and $K_W^2 = -2$. Consider the contraction maps:

$$W \xrightarrow{\varphi_1} W_1 \xrightarrow{\varphi_2} W',$$

where E_1 is a (-1)-curve on W, E_2 is a (-1)-curve on W_1, φ_1 is the contraction of the (-1)-curve E_1, and W' is an Enriques surface.

Lemma 4.2. i) $N_i \cap E_1 \neq \emptyset$ for some $i \in \{1, 2, \ldots, 9\}$.

ii) $N_1E_1 = 1$ after relabeling $\{N_1, \ldots, N_9\}$.

iii) $N_sE_1 = 0$ for all $s \in \{2, \ldots, 9\}$.

Proof. i) Suppose that $N_i \cap E_1 = \emptyset$ for all $i = 1, \ldots, 9$. Let A be the number of disjoint (-2)-curves on W_1. Then by Lemma 3.4 (i), $9 \leq A \leq \rho(W_1) - 2 = 9$. Thus $A = 9$ and W_1 should be a minimal surface by Lemma 3.4 (ii). This is a contradiction because W_1 is not minimal. Hence $N_i \cap E_1 \neq \emptyset$ for some $i \in \{1, 2, \ldots, 9\}$.
ii) By part i) we may choose a \((-2)\)-curve \(N_1\) such that \(N_1 \bar{E}_1 = \alpha > 0\). Then
\((\varphi_1(N_1))^2 = -2 + \alpha^2\) and \(\varphi_1(N_1)K_{W_1} = -\alpha\). We claim that \(\alpha\) must be 1. Indeed, suppose \(\alpha \geq 2\), then \((\varphi_1(N_1))^2 > 0\), so \(\varphi_2 \circ \varphi_1(N_1)\) is a curve on \(W\). Moreover,
\(\varphi_2 \circ \varphi_1(N_1)K_{W_1} \leq \varphi_1(N_1)K_{W_1}\). But the left side is zero because \(2K_{W_1} \equiv 0\) and the right side is negative because \(\varphi_1(N_1)K_{W_1} = -\alpha\) by our assumption. This is a contradiction, thus \(\alpha = 1\).

iii) Suppose that \(N_i \bar{E}_1 \neq 0\) for some \(s \in \{2, \ldots, 9\}\). Then \(W_i\) would contain a pair of \((-1)\)-curves with nonempty intersection. This is impossible because \(K_{W_i}\) is nef. Hence \(N_s \bar{E}_1 = 0\) for all \(s \in \{2, \ldots, 9\}\).

In this situation, consider an irreducible nonsingular curve \(\Gamma\) disjoint to \(N_1\) and such that \(\bar{E}_1 \Gamma = \beta\). Then we obtain the following.

Lemma 4.3. \(2p_a(\Gamma) - 2 = \Gamma^2 + 2\beta\).

Proof. By Lemma 4.2,

\[K_W \equiv \varphi_1^*(K_{W_1}) + \bar{E}_1 \equiv \varphi_1^*(\varphi_2^*(K_{W_1}) + \bar{E}_2) + \bar{E}_1 \equiv \varphi_1^* \circ \varphi_2^*(K_{W_1}) + N_1 + 2\bar{E}_1.\]

So \(K_{W_1} \Gamma = \varphi_1^* \circ \varphi_2^*(K_{W_1})\Gamma + N_1 \Gamma + 2\bar{E}_1 \Gamma = 2\beta\) since \(2K_{W_1} \equiv 0\) and \(N_1\) and \(\Gamma\) are disjoint. Thus we get
\(2p_a(\Gamma) - 2 = \Gamma^2 + 2\beta\).

By referring to Table 1. of Section 3.1 with respect to \(K_{W_1}^2 = -2\) and \(k = 9\), we obtain a list of possible branch curves \(B_0\). Then we can consider \(\Gamma\) as one of the components \(\Gamma_i\) in the \(B_0\). The possibilities for \(\Gamma\) which we will consider are:

\[(0, -4), (2, -2), (2, 0), (1, -2), (0, -6), (3, 2), (1, -4).\]

We treat each case separately.

a) The case \(\Gamma\): \((0, -4)\).

By Lemma 4.3, \(\beta = 1\). Thus \(W\) should contain nine disjoint \((-2)\)-curves. This is a contradiction because \(W\) can contain at most eight disjoint \((-2)\)-curves since it is an Enriques surface.

From now on, we consider the nodal Enriques surface \(\Sigma'\) obtained by contracting eight \((-2)\)-curves \(\bar{N}_i, i = 2, \ldots, 9\), where \(\bar{N}_i := \varphi_2 \circ \varphi_1(N_i)\) on \(W\). The surface \(\Sigma'\) has eight nodes \(q_i, i = 2, \ldots, 9\) and \(\bar{\Gamma}_{\Sigma'}\) which is image of \(\hat{\Gamma}\), where \(\hat{\Gamma} := \varphi_2 \circ \varphi_1(\Gamma)\) on \(W\). By Theorem 4.1 in [15], \(\Sigma' = D_1 \times D_2 / G\), where \(D_1\) and \(D_2\) are elliptic curves and \(G\) is a finite group \(\mathbb{Z}_2^2\) or \(\mathbb{Z}_3^2\). Let \(p\) be the quotient map \(D_1 \times D_2 \to D_1 \times D_2 / G = \Sigma'\). The map \(p\) is étale outside the preimage of nodes \(q_i\) on \(\Sigma'\), and we note that \(\bar{\Gamma}_{\Sigma'}\) does not meet with any eight nodes \(q_i\) on \(\Sigma'\). We write \(\hat{\Gamma}_{D_1 \times D_2}\) for a component of \(p^{-1}(\bar{\Gamma}_{\Sigma'})\).
b) The case \(\Gamma' : (0, -6) \).

By Lemma 4.3, \(\beta = 2 \). So \(\tilde{\Gamma} \) is \((2, 2)\). Then the normalization \(\tilde{\Gamma}_{\text{nor}} \) of \(\tilde{\Gamma}_{D_1 \times D_2} \) is a smooth rational curve since \(p_\phi(\Gamma') = 0 \) and \(\Gamma' \) is smooth.

Let \(pr_i \) be the projection map \(D_1 \times D_2 \to D_i \). Then this induces morphisms \(p_i : \tilde{\Gamma}_{\text{nor}} \to D_i \) which factors through \(pr_i|_{\tilde{\Gamma}_{D_1 \times D_2}} \). Then since \(\tilde{\Gamma}_{D_1 \times D_2} \) is a curve on \(D_1 \times D_2 \), \(p_i \) should be a surjective morphism for some \(i \in \{1, 2\} \). However, this is impossible because \(p_g(\tilde{\Gamma}_{\text{nor}}) = 0 \) and \(p_g(D_i) = 1 \).

c) The case \(\Gamma' : (1, -4) \).

By Lemma 4.3, \(\beta = 2 \). So \(\tilde{\Gamma} \) is \((3, 4)\). Then the normalization \(\tilde{\Gamma}_{\text{nor}} \) of \(\tilde{\Gamma}_{D_1 \times D_2} \) is a smooth elliptic curve because \(p_\phi(\Gamma') = 1 \) and \(\Gamma' \) is smooth. Thus \(\tilde{\Gamma}_{\text{nor}} \to D_1 \times D_2 \) is a morphism of Abelian varieties and so must be linear, which implies that \(\tilde{\Gamma}_{D_1 \times D_2} \) is smooth. Thus \(\tilde{\Gamma}_{\Sigma'} \) is also smooth because \(\tilde{\Gamma}_{\Sigma'} \) does not meet any of the eight nodes \(q_i \) on \(\Sigma' \) and \(\rho \) is étale away from the nodes \(q_i \). This is a contradiction since we assumed \(\tilde{\Gamma}_{\Sigma'} \) to be singular.

d) The case \(\Gamma' : (3, 4) \).

By Lemma 4.3, we have \(\tilde{E}_i \Gamma_i = 1 \) for \(i = 0, 1, 2 \). So we get \(\tilde{\Gamma}_0 : (3, 4) \), \(\tilde{\Gamma}_1 : (1, 0) \), \(\tilde{\Gamma}_2 : (1, 0) \) and \(\tilde{\Gamma}_i \Gamma_j = 2 \) for \(i \neq j \) on the Enriques surface \(W' \). Now, we apply Proposition 3.1.2 of [7] to the curve \(\Gamma' \). Then one of the linear systems \(|\tilde{\Gamma}_2| \) or \(|2\tilde{\Gamma}_2| \) gives an elliptic fibration \(f : W' \to \mathbb{P}^1 \). So we have the reducible non-multiple degenerate fibres \(\tilde{T}_1 (= \tilde{N}_2 + \tilde{N}_3 + \tilde{N}_4 + \tilde{N}_5 + 2\tilde{E}_1) \) and \(\tilde{T}_2 (= \tilde{N}_6 + \tilde{N}_7 + \tilde{N}_8 + \tilde{N}_9 + 2\tilde{E}_2) \) of \(f \) by Theorem 5.6.2 of [7], since \(W' \) has eight disjoint \((-2)\)-curves. Moreover, \(f \) has two double fibres \(2\tilde{F}_1 \) and \(2\tilde{F}_2 \) since \(W' \) is an Enriques surface.

(1) Suppose \(|\tilde{T}_2| \) determines the elliptic fibration. Then \(\tilde{\Gamma}_2 \) is a fibre of \(f \). Since \(\tilde{\Gamma}_i \tilde{\Gamma}_2 = 2 \) (they meet at a point with multiplicity 2), \(2\tilde{F}_1 \tilde{\Gamma}_1 = 2 \), \(2\tilde{F}_2 \tilde{\Gamma}_1 = 2 \) and \(\tilde{T}_i \tilde{\Gamma}_1 = 2 \) for \(i = 1, 2 \), we apply Hurwitz’s formula to the covering \(f|_{\tilde{\Gamma}_1} : \tilde{\Gamma}_1 \to \mathbb{P}^1 \) to obtain

\[
0 = 2p_g(\tilde{\Gamma}_1) - 2 \geq 2(-2) + 5 = 1,
\]

which is impossible.

(2) Suppose \(|2\tilde{T}_2| \) determines the elliptic fibration. Then \(2\tilde{\Gamma}_2 \) is a fibre of \(f \). Since \(2\tilde{F}_1 \tilde{\Gamma}_1 (= 2\tilde{F}_2 \tilde{\Gamma}_1) = 4 \), \(2\tilde{F}_2 \tilde{\Gamma}_1 = 4 \) and \(\tilde{T}_i \tilde{\Gamma}_1 = 4 \) for \(i = 1, 2 \), we apply Hurwitz’s formula to the covering \(f|_{\tilde{\Gamma}_1} : \tilde{\Gamma}_1 \to \mathbb{P}^1 \) to obtain

\[
0 = 2p_g(\tilde{\Gamma}_1) - 2 \geq 4(-2) + 3 + 2 + 2 + 2 = 1,
\]

which is impossible.

e) The case \(\Gamma' : (2, 0) \).

By Lemma 4.3, \(\tilde{E}_i \Gamma_i = 1 \) for \(i = 0, 1, 2 \). So we have \(\tilde{\Gamma}_0 : (2, 2) \), \(\tilde{\Gamma}_1 : (2, 2) \), \(\tilde{\Gamma}_2 : (1, 0) \) and \(\tilde{\Gamma}_i \tilde{\Gamma}_j = 2 \) for \(i \neq j \) on the Enriques surface \(W' \).

Lemma 4.4. \(h^0(W', \mathcal{O}_{W'}(\tilde{\Gamma}_1)) = 2 \).
Proof. Since $2K_W \equiv 0$ and $K_W + \Gamma_1$ is nef and big,
\[
h^i(W', \mathcal{O}_W(\Gamma_1)) = h^i(W', \mathcal{O}_W(2K_W + \Gamma_1)) \\
= h^i(W', \mathcal{O}_W(K_W + (K_W + \Gamma_1))) \\
= 0
\]
for $i = 1, 2$ by Kawamata–Viehweg Vanishing Theorem. Thus
\[
h^0(W', \mathcal{O}_W(\Gamma_1)) = 2
\]
by Riemann–Roch Theorem. \qed

Lemma 4.5. Let T be a nef and big divisor on W. Then any divisor U in a linear system $|T|$ is connected.

Proof. Consider an exact sequence
\[
0 \to \mathcal{O}_W(-U) \to \mathcal{O}_W \to \mathcal{O}_U \to 0.
\]
Then we get $H^0(\mathcal{O}_W) \cong H^0(\mathcal{O}_U)$ by the long exact sequence for cohomology, and so U is connected. \qed

Now, we apply Proposition 3.1.2 of [7] to the curve Γ_2. Then one of the linear systems $|\Gamma_2|$ or $|2\Gamma_2|$ gives an elliptic fibration $f: W' \to \mathbb{P}^1$. So we have the reducible non-multiple degenerate fibres $\tilde{T}_1 (= \tilde{N}_2 + \tilde{N}_3 + \tilde{N}_4 + \tilde{N}_5 + 2E_1), \tilde{T}_2 (= \tilde{N}_6 + \tilde{N}_7 + \tilde{N}_8 + \tilde{N}_9 + 2E_2)$ and two double fibres $2F_1, 2F_2$ of the fibration f.

(1) Suppose $|\Gamma_2|$ determines the elliptic fibration. Consider an exact sequence
\[
0 \to \mathcal{O}_W(\Gamma_1 - E_1) \to \mathcal{O}_W(\Gamma_1) \to \mathcal{O}_E(\Gamma_1) \to 0.
\]
If we assume $H^0(W', \mathcal{O}_W(\Gamma_1 - E_1)) \neq 0$, then $\Gamma_1 \equiv 2E_1 + \tilde{N}_2 + \tilde{N}_3 + \tilde{N}_4 + \tilde{N}_5 + \tilde{N}_6 + \tilde{N}_7 + \tilde{N}_8 + \tilde{N}_9 + 2E_2 \equiv \Gamma_2 + G$ for some effective divisor G, and so $p_a(G) = 0$ because $\Gamma_2G = 2$. So there is an irreducible smooth curve C with $p_a(C) = 0$ (i.e. C is a $(−2)$-curve) as a component of G. We claim $CN_i = 0$ for $i = 2, 3, \ldots, 9$. Indeed, suppose $CN_i > 0$ for some i, and then $0 = G\tilde{N}_i = (H + C)\tilde{N}_i$, where $G = H + C$ for some effective divisor H. Since $H\tilde{N}_i < 0$, \tilde{N}_i is a component of H. Thus $\tilde{G}_1 - \tilde{G}_2$ is a $(−2)$-curve as a component of I, which is impossible by $p_a(\tilde{G}_1) = 2, p_a(\tilde{G}_2) = 1, \tilde{G}I = 2, \tilde{N}_I = 2$ and connectedness among \tilde{G}_2, \tilde{N}_I and I induced from Lemma 4.5 since \tilde{G}_1 is nef and big. On the other hand, suppose $CN_i < 0$ for some i, then $C = \tilde{N}_i$ because C and \tilde{N}_i are irreducible and reduced. Thus $\tilde{G}_1 - \tilde{G}_2 \equiv G = \tilde{N}_i + H$ for an effective divisor H, which is impossible by $p_a(\tilde{G}_1) = 2, p_a(\tilde{G}_2) = 1, \tilde{G}_2H = 2$ and $\tilde{N}_IH = 2$ and connectedness among \tilde{G}_2, \tilde{N}_I and H induced from Lemma 4.5 since \tilde{G}_1 is nef and big. Hence we have nine disjoint $(−2)$-curves $C, \tilde{N}_2, \ldots, \tilde{N}_9$, which induce a contradiction on the
Enriques surface W' by Lemma 3.4. Now, we have $H^0(W', O_W(\tilde{\Gamma}_1 - E_1)) = 0$, and so

$$H^0(W', O_W(\tilde{\Gamma}_1)) \to H^0(E_1, O_{E_1}(\tilde{\Gamma}_1))$$

is an injective map.

Since $h^0(W', O_W(\tilde{\Gamma}_1)) = 2$ and $h^0(E_1, O_{E_1}(\tilde{\Gamma}_1)) = 2$ (because $\tilde{\Gamma}_1 E_1 = 1$), $\tilde{\Gamma}_1 = \tilde{N}_2 + \tilde{\Gamma}_i'$ for some effective divisor $\tilde{\Gamma}_i'$. The injectivity of the above map and $E_1 = \mathbb{P}^1$ imply that the linear system $\tilde{\Gamma}_1$ restricted on E_1 should move on E_1. Therefore at least one member of the linear system of $\tilde{\Gamma}_1$ should meet \tilde{N}_2.

Since $\tilde{\Gamma}_1$ is a smooth projective curve of genus 2 whose self intersection number is 2, and $\tilde{\Gamma}_1^2 \tilde{N}_2 = 2$, we have $\tilde{\Gamma}_1^2 = 0$ and $p_a(\tilde{\Gamma}_1) = 1$. And we note that $h^0(W', O_W(\tilde{\Gamma}_1')) = 1$. Therefore, $[2\tilde{\Gamma}_1]$ gives an elliptic fibration, and the special member of $[2\tilde{\Gamma}_1]$ contains E_1 because $\tilde{\Gamma}_1' E_1 = 0$. Then this special member also contains $\tilde{N}_3, \tilde{N}_4, \tilde{N}_5$ because $\tilde{\Gamma}_1' \tilde{N}_i = 0$ for $i = 3, 4, 5$. Since $[2\tilde{\Gamma}_1]$ gives an elliptic fibration,

$$2 \tilde{\Gamma}_1' = 2E_1 + \tilde{N}_3 + \tilde{N}_4 + \tilde{N}_5 + \tilde{N},$$

where \tilde{N} is a (-2)-curve with $\tilde{N} E_1 = 1$, $\tilde{N} \tilde{N}_j = 0$ for all $j = 3, 4, 5, 6, 7, 8, 9$. And we get $\tilde{N} \tilde{N}_2 = 2$ because $\tilde{\Gamma}_1' \tilde{N}_2 = 2$. Then we see that $[2(\tilde{N} + \tilde{N}_2)]$ gives an elliptic pencil on W'. On the other hand, by the classification of possible singular fibers on an elliptic pencil on W' (Theorem 5.6.2 in [7], or [15]), we have that any elliptic fibration on W' has no singular fibers of type $2(\tilde{N} + \tilde{N}_2)$. We note that \tilde{N}_j for all $j = 3, 4, 5, 6, 7, 8, 9$ are also on singular fibers.

(2) Suppose $[2\tilde{\Gamma}_2]$ determines the elliptic fibration. Consider an exact sequence

$$0 \to O_W(\tilde{\Gamma}_1 - E_1) \to O_W(\tilde{\Gamma}_1) \to O_{E_1}(\tilde{\Gamma}_1) \to 0.$$

If we assume $H^0(W', O_W(\tilde{\Gamma}_1 - E_1)) \neq 0$, then $\tilde{\Gamma}_1 \equiv E_1 + \tilde{N}_2 + \tilde{N}_3 + \tilde{N}_4 + \tilde{N}_5 + G$ for some effective divisor G by the same reason as the above. Then it is impossible by $p_a(\tilde{\Gamma}_1) = 2$, $E_1 G = 0$ and $\tilde{N}_i G = 1$ for all $i = 2, 3, 4, 5$ and connectedness among $E_1, \tilde{N}_2, \tilde{N}_3, \tilde{N}_4, \tilde{N}_5$ and G induced from Lemma 4.5 since $\tilde{\Gamma}_1$ is nef and big. Thus we have $H^0(W', O_W(\tilde{\Gamma}_1 - E_1)) = 0$, and so

$$H^0(W', O_W(\tilde{\Gamma}_1)) \to H^0(E_1, O_{E_1}(\tilde{\Gamma}_1))$$

is an injective map.

Since $h^0(W', O_W(\tilde{\Gamma}_1)) = 2$ and $h^0(E_1, O_{E_1}(\tilde{\Gamma}_1)) = 3$ (because $\tilde{\Gamma}_1 E_1 = 2$), $\tilde{\Gamma}_1 \equiv \tilde{N}_2 + \tilde{\Gamma}_i'$ for some effective divisor $\tilde{\Gamma}_i'$ by the same reason as the above. Then it is also impossible by the same argument as the above.

f) The case $(2, 2) + (2, 0)$.

By Lemma 4.3, $\tilde{E}_1 \Gamma_0 = 2$ and $\tilde{E}_1 \Gamma_1 = 1$. So we have $\tilde{\Gamma}_0: (4, 6)$ and $\tilde{\Gamma}_1: (2, 2)$ on the Enriques surface W'.
Consider an elliptic fibration of Enriques surface $f: W' \to \mathbb{P}^1$, and assume $\tilde{\Gamma}_1 F = 2\gamma$, where F is a general fibre of f. Then $\gamma > 0$ because $\tilde{\Gamma}_1$ cannot occur in a fibre of f since $p_a(\tilde{\Gamma}_1) = 2$. Moreover, consider an exact sequence

$$0 \to \mathcal{O}_W(\tilde{\Gamma}_1 - E_1) \to \mathcal{O}_W(\tilde{\Gamma}_1) \to \mathcal{O}_{E_1}(\tilde{\Gamma}_1) \to 0.$$

If we assume $H^0(W', \mathcal{O}_W(\tilde{\Gamma}_1 - E_1)) \neq 0$, then $\tilde{\Gamma}_1 = E_1 + \tilde{N}_2 + \tilde{N}_3 + \tilde{N}_4 + \tilde{N}_5 + G$ for some effective divisor G, which is impossible by $p_a(\tilde{\Gamma}_1) = 2$, $N_i G = 1$ for all $i = 2, 3, 4, 5$ and connectedness among $E_1, \tilde{N}_2, \tilde{N}_3, \tilde{N}_4, \tilde{N}_5$ and G induced from Lemma 4.5 since $\tilde{\Gamma}_1$ is nef and big. Now, we have $H^0(W', \mathcal{O}_W(\tilde{\Gamma}_1 - E_1)) = 0$, and so

$$H^0(W', \mathcal{O}_W(\tilde{\Gamma}_1)) \to H^0(E_1, \mathcal{O}_{E_1}(\tilde{\Gamma}_1))$$

is an injective map. Since $h^0(W', \mathcal{O}_W(\tilde{\Gamma}_1)) = 2$ by Lemma 4.4 and $h^0(E_1, \mathcal{O}_{E_1}(\tilde{\Gamma}_1)) = \gamma + 1$ (because $\tilde{\Gamma}_1 E_1 = \gamma$), $\tilde{\Gamma}_1 = \tilde{N}_2 + \tilde{\Gamma}_1'$ for some effective divisor $\tilde{\Gamma}_1'$ by the same reason as the previous case. Then it is also impossible by the same argument as the previous case.

Therefore, all other cases except $B_0 = \frac{r_0}{(3,0)} + \frac{r_1}{(1,-2)}$ or $\frac{r_0}{(3,-2)}$ are excluded.

Lemma 4.6. If W is birational to an Enriques surface then S has a 2-torsion element.

Proof. If W is birational to an Enriques surface then $2K_W$ can be written as $2A$ where A is an effective divisor. Thus $2K_V = \tilde{\pi}^*(2A) + 2\tilde{R}$, where \tilde{R} is the ramification divisor of $\tilde{\pi}$. So $G = \tilde{\pi}^*(A) + \tilde{R}$ is an effective divisor such that $G \sim K_V$ but $G \neq K_V$ because G is effective and $p_a(V) = 0$. Since $2G \equiv 2K_V$, $G - K_V$ is a 2-torsion element, and so S has a 2-torsion element. \qed

Remark 4.7. Suppose $B_0 = \frac{r_0}{(3,0)} + \frac{r_1}{(1,-2)}$. By Lemma 4.3, $\tilde{E}_1 \Gamma_0 = 2$ and $\tilde{E}_1 \Gamma_1 = 1$. So we have $\tilde{\Gamma}_0: (5, 8)$, $\tilde{\Gamma}_1: (1, 0)$ and $\tilde{\Gamma}_0 \tilde{\Gamma}_1 = 4$ on the Enriques surface W'. We have $h^0(W', \mathcal{O}_{W'}(\tilde{\Gamma}_0)) = 5$ since $\tilde{\Gamma}_0: (5,8)$. However, the intersection number $\tilde{\Gamma}_0 \tilde{\Gamma}_1 = 4$ together with tangency condition gives a six dimensional condition.

By the results in Sections 3 and 4, we have the table of the classification in Introduction.

5. Examples

There is an example of a minimal surface S of general type with $p_a(S) = q(S) = 0$, $K_S^2 = 7$ with an involution. Such an example can be found in Example 4.1 of [13]. Since the surface S is constructed by bidouble cover (i.e. \mathbb{Z}_2^2-cover), there are three involutions γ_1, γ_2 and γ_3 on S. The bicanonical map ϕ is composed with the involution
\(\gamma_1 \) but not with \(\gamma_2 \) and \(\gamma_3 \). Thus the pair \((S, \gamma_1)\) has \(k = 11 \) by Proposition 3.2, and then \(W_1 \) is rational and \(K_{W_1}^2 = -4 \) by Theorem 3.5 (ii), where \(W_1 \) is the blowing-up of all the nodes in \(S/\gamma_1 \). On the other hand, we cannot see directly about \(k \), \(K^2 \) and the Kodaira dimension of the quotients in the case \((S, \gamma_2)\) and \((S, \gamma_3)\). We use the notation of Example 4.1 in [13], but \(P \) denotes \(\Sigma \). Moreover, \(W_i \) comes from the blowing-up at all the nodes of \(\Sigma_i \equiv S/\gamma_i \) for \(i = 1, 2, 3 \).

We now observe that \(W_i \) is constructed by using a double covering \(T_i \) of a rational surface \(P \) with a branch divisor related to \(L_i \). The surface \(P \) is obtained as the blowing-up at six points on a configuration of lines in \(\mathbb{P}^2 \). The surface \(W_i \) is obtained by examining \((-1)\) and \((-2)\)-curves on \(T_i \) and contracting some of them.

We will now explain this examination in more details for each case. Firstly, for \(i = 1 \), then \(K_{T_1}^2 = -6 \) since \(K_{T_1} \equiv \pi_1^*(K_P + L_1) \), where \(\pi_1 : T_1 \rightarrow P \) is the double cover. We observe that there are only two \((-1)\)-curves on \(T_1 \) because \(S_3 \) and \(S_4 \) are on the branch locus of \(\pi_1 \). So \(K_{W_1}^2 = K_{\Sigma_1}^2 = -6 + 2 = -4 \). On the other hand, we also observe that there are only seven nodes and four \((-2)\)-curves on \(T_1 \) because \(D_2D_3 = 7 \) and \(S_1 \) and \(S_2 \) do not contain in \(D_2 + D_3 \). So \(\Sigma_1 \) has \(k = 11 \) nodes. Moreover, \(H^0(T_1, \mathcal{O}_{T_1}(2K_{T_1})) = H^0(P, \mathcal{O}_P(2K_P + 2L_1)) \oplus H^0(P, \mathcal{O}_P(2K_P + L_1)) \) since \(2K_{T_1} \equiv \pi_1^*(2K_P + 2L_1) \) and \(\pi_1^*(\mathcal{O}_{T_1}) = \mathcal{O}_P \oplus \mathcal{O}_P(-L_1) \). So \(H^0(T_1, \mathcal{O}_{T_1}(2K_{T_1})) = 0 \) because \(2K_P + 2L_1 = 4l - 2e_2 - 4e_4 - 2e_5 - 2e_6 \) and \(2K_P + L_1 = -l + e_1 + e_3 - e_4 \). This means that \(T_1 \) is rational, and therefore \(W_1 \) is rational. For the branch divisor \(B_0 \), we observe \(f_2 \) and \(\Delta_1 \) in \(D_1 \). Since \(f_2D_2 = 4 \) and \(f_2D_3 = 4 \), \(f_2(D_2 + D_3) = 8 \). By Hurwitz’s formula, \(2p_g(\Gamma_0) - 2 = 2(2p_g(f_2) - 2) + 8 \), and so \(p_g(\Gamma_0) = 3 \) because \(f_2 \) is rational, and moreover \(\Gamma_0^2 = 0 \) because \(f_2^2 = 0 \). This means \(\Gamma_0 : (3,0) \). Similarly, since \(\Delta_1D_2 = 1 \) and \(\Delta_1D_3 = 5 \), \(\Delta_1(D_2 + D_3) = 6 \). By Hurwitz’s formula, \(2p_g(\Gamma_1) - 2 = 2(2p_g(\Delta_1) - 2) + 6 \), and so \(p_g(\Gamma_1) = 2 \) because \(\Delta_1 \) is rational, and moreover \(\Gamma_1^2 = -2 \) because \(\Delta_1^2 = -1 \). This means \(\Gamma_1 : (2, -2) \), thus \(B_0 = \Gamma_0 \oplus (\Gamma_1, -\Omega_1) \).

Secondly, in the case \(i = 2 \), we calculate \(K_{T_2}^2 = -6 \). We observe that there are only four \((-1)\)-curves on \(T_2 \) because \(S_1, S_2, S_3, S_4 \) are on the branch locus. So \(K_{W_2}^2 = K_{\Sigma_2}^2 = -6 + 4 = -2 \). On the other hand, we also observe that there are only nine nodes on \(T_2 \) because \(D_1D_3 = 9 \). So \(\Sigma_2 \) has \(k = 9 \) nodes. Chen [6] shows that \(H^0(T_2, \mathcal{O}_{T_2}(2K_{T_2})) = 1 \) and that \(W_2 \) is birational to an Enriques surface. For the branch divisor \(B_0 \), we observe \(f_3 \) and \(\Delta_2 \) in \(D_2 \). Since \(f_3D_1 = 2 \) and \(f_3D_3 = 6 \), \(p_g(\Gamma_0) = 3 \) because \(f_3 \) is rational, and \(\Gamma_0^2 = 0 \) because \(f_3^2 = 0 \). This means \(\Gamma_0 : (3,0) \). Moreover, since \(\Delta_2D_1 = 3 \) and \(\Delta_2D_3 = 1 \), \(p_g(\Gamma_1) = 1 \) because \(\Delta_2 \) is rational, and \(\Gamma_1^2 = -2 \) because \(\Delta_2^2 = -1 \). This means \(\Gamma_1 : (1, -2) \), thus \(B_0 = \Gamma_0 \oplus (\Omega_1, -\Omega_1) \).

Lastly, for \(i = 3 \), we get \(K_{T_3}^2 = -4 \). There are only two \((-1)\)-curves on \(T_3 \) because \(S_1, S_2 \) are on the branch locus. So \(K_{W_3}^2 = K_{\Sigma_3}^2 = -4 + 2 = -2 \). On the other hand, there are only nine nodes on \(T_3 \) because \(D_1D_3 = 5 \) and \(S_3 \) and \(S_4 \) do not contain in \(D_1 + D_2 \). So \(\Sigma_3 \) has \(k = 9 \) nodes. Also, \(H^0(T_3, \mathcal{O}_{T_3}(2K_{T_3})) = 0 \) by a similar argument to the case \(i = 1 \). So \(W_3 \) is rational. For the branch divisor \(B_0 \), we observe \(f_1, f'_1 \) and \(\Delta_3 \) in \(D_3 \). Since \(f_1D_1 = 4 \) and \(f_1D_2 = 2 \), \(p_g(\Gamma_0) = 2 \) because \(f_1 \) is rational, and
\[\Gamma_0^2 = 0 \] because \(f_1^2 = 0 \). This means \(\Gamma_0: (2,0) \), and \(\Gamma_1 \) related to \(f_1^2 \) is also of type \((2,0)\). Moreover, since \(\Delta_3 D_1 = 1 \) and \(\Delta_3 D_2 = 3 \), \(p_g = 1 \) because \(\Delta_3 \) is rational, and \(\Gamma_2^2 = -2 \) because \(\Delta_3^2 = -1 \). This means \(\Gamma_2: (1,-2) \), thus \(B_0 = \Gamma_0 \) (2,0) + \(\Gamma_1 \) (2,0) + \(\Gamma_2 \) (1,-2).

The following table summarizes the above computation:

<table>
<thead>
<tr>
<th>(k)</th>
<th>(K_{W_i}^2)</th>
<th>(B_0)</th>
<th>(W_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((S, \gamma_1))</td>
<td>11</td>
<td>-4</td>
<td>(\Gamma_0) (3,0) + (\Gamma_1) (2,-2)</td>
</tr>
<tr>
<td>((S, \gamma_2))</td>
<td>9</td>
<td>-2</td>
<td>(\Gamma_0) (3,0) + (\Gamma_1) (1,-2)</td>
</tr>
<tr>
<td>((S, \gamma_3))</td>
<td>9</td>
<td>-2</td>
<td>(\Gamma_0) (2,0) + (\Gamma_1) (2,0) + (\Gamma_2) (1,-2)</td>
</tr>
</tbody>
</table>

Remark. In the pre-version of the paper, the 3 quotients of Inoue’s example were claimed rational surfaces. And we raised the question for the existence of a minimal smooth projective surface of general type with \(p_g = 0 \) and \(K^2 = 7 \) which is a double cover of a surface birational to an Enriques surface or a surface of general type. Rito [18] constructed an example whose quotient is birational to an Enriques surface. Later Chen [6] showed that Rito’s example is the Inoue’s one, and Rito pointed out that one of quotients is not rational but is birational to an Enriques surface.

Acknowledgements. Both authors would like to thank Margarida Mendes Lopes for sharing her ideas which run through this work. The simplified proof of Theorem 3.5 and Lemma 4.6 are due to her. And they would like to thank Yifan Chen, Stephen Coughlan, JongHae Keum, Miles Reid, and Carlos Rito for some useful comments. The authors thank a referee for valuable comments to modify the original version.

The first named author was partially supported by the Special Research Grant of Sogang University. Both authors were partially supported by the World Class University program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R33-2008-000-10101-0).

References

[18] C. Rito: *Some bidouble planes with $p_g = q = 0$ and $4 \leq K^2 \leq 7* arXiv:1103.2940.

Yongnam Lee
Department of Mathematics
Sogang University
Sinsu-dong, Mapo-gu
Seoul 121-742
Korea
Current address:
Department of Mathematical Sciences
KAIST, 291 Daehak-ro, Yuseong-gu
Daejon 305-701
Korea
e-mail: ynlee@kaist.ac.kr

YongJoo Shin
Department of Mathematics
Sogang University
Sinsu-dong, Mapo-gu
Seoul 121-742
Korea
Current address:
Department of Mathematical Sciences
ASARC at KAIST
291 Daehak-ro, Yuseong-gu
Daejon 305-701
Korea
e-mail: shinyongjoo@gmail.com