<table>
<thead>
<tr>
<th>Title</th>
<th>Newman's theorem for pseudosubmersions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Ku, Hsu-Tung / Ku, Mei-Chin / Mann, L.N.</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 20(4); 793-801</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1983-12</td>
</tr>
<tr>
<td>ISSN</td>
<td>0030-6126</td>
</tr>
<tr>
<td>Textversion</td>
<td>Publisher</td>
</tr>
<tr>
<td>Relation</td>
<td>The OJM has been digitized through Project Euclid platform http://projecteuclid.org/ojm starting from Vol. 1, No. 1.</td>
</tr>
</tbody>
</table>

Placed on: Osaka City University
NEWMAN'S THEOREM FOR PSEUDO-SUBMERSIONS

HSU-TUNG KU, MEI-CHIN KU AND L.N. MANN

(Received June 4, 1982)

1. Introduction. In 1931 M.H.A. Newman [N] proved the following result.

Theorem (Newman). *If M is a connected topological manifold with metric d, there exists a number \(\varepsilon = \varepsilon(M, d) > 0 \), depending only upon M and d, such that every finite group G acting effectively on M has at least one orbit of diameter at least \(\varepsilon \).*

P.A. Smith [S] in 1941 proved a version of Newman's Theorem in terms of coverings of \(M \) and Dress [D] in 1969 gave a simplified proof of Newman's Theorem based on Newman's original approach and using a modern version of local degree.

In another direction Cernavskii [C] in 1964 generalized Newman's Theorem to the setting of finite-to-one open mappings on manifolds. His techniques were based upon those of Smith. Recently McAuley and Robinson [M-R] and Deane Montgomery [MO] have expanded upon Cernavskii's results. In fact McAuley and Robinson, using the techniques of Dress, have obtained the following version of Cernavskii's result. [M-R, Theorem 3].

Theorem (Cernavskii-McAuley-Robinson). *If M is a compact connected topological manifold with metric d, there exists a number \(\varepsilon = \varepsilon(M, d) > 0 \) such that if \(Y \) is a metric space and \(f: M \to Y \) a continuous finite-to-one proper open surjective mapping which is not a homeomorphism, then there is at least one \(y \in Y \) such that \(\text{diam } f^{-1}(y) \geq \varepsilon \).*

In [H-M] we gave estimates of the \(\varepsilon \) in Newman's Theorem for Riemannian manifolds \(M \) in terms of convexity and curvature invariants of \(M \). In this note we apply the techniques of [H-M] to obtain estimates of \(\varepsilon \) for the Cernavskii-McAuley-Robinson result for the case where \(M \) is a Riemannian manifold. In particular, if \(S^n \) is the standard unit sphere with standard metric, we show \(\varepsilon > \pi/2 \), i.e. if \(f: S^n \to Y \) is as above, there exists \(y \in Y \) with \(\text{diam } f^{-1}(y) > \pi/2 \). We also obtain a cohomology version of Newman's Theorem for compact orientable Riemannian manifolds which generalizes Theorem 3 of
We wish to thank McAuley and Robinson for sending us [M-R] prior to its publication.

We shall call an open finite-to-one proper surjective map \(f: M \to Y \), \(Y \) a metric space, which is not a homeomorphism, a pseudo-submersion, and \(f^{-1}(f(x)) \) an orbit of \(f \) at \(x \) and denoted by \(O_f(x) \).

Now let \(M \) be a connected Riemannian manifold with a metric induced from the Riemannian metric of \(M \). Assume that there exists at least one pseudo-submersion \(f: M \to Y \). Define the Newman's diameter \(d^T(M) \) of \(M \) by

\[
d^T(M) = \sup \left\{ \varepsilon \left| \exists \text{ any pseudo-submersion } f: M \to Y. \quad \exists x \in M \text{ such that } \text{diam } O_f(x) \geq \varepsilon \right. \right\}
\]

Define the cardinality of \(f \) by \(\text{Card } f = \max \{ \text{card } O_f(x) : x \in M \} \). Suppose there exists at least one pseudo-submersion \(f: M \to Y \) with \(\text{Card } f = p > 1 \); we define the mod \(p \) Newman's diameter \(d^T_p(M) \) as the supremum of the numbers \(\varepsilon > 0 \) such that for every pseudo-submersion \(g: M \to Y \) with \(\text{Card } g = p \), there exists an orbit of diameter at least \(\varepsilon \).

We call a subset \(S \) of a Riemannian manifold \(M \) convex if for every pair of points in \(S \) there exists a unique distance measuring geodesic in \(S \) joining them. For \(x \in M \), the radius of convexity of \(M \) at \(x \), which we denote by \(r_x \), is defined as the supremum of the radii of all convex embedded open balls centered at \(x \).

The following result is based upon Lemma 3 in [D] and appears as Theorem 2 in [M-R].

Proposition 2.1 (Dress-McAuley-Robinson). Let \(U \) be an open, connected, relatively compact subset of \(\mathbb{R}^n \) and \(f: U \to Y \) a pseudo-submersion. Then

\[
D = \max \left\{ \min \{ ||x-y|| : y \in \partial \bar{U} \} : x \in U \right\}
\]

\[
\leq C = \max \{ \text{diam } O_f(x) : x \in \partial \bar{U} \} .
\]

Here \(||x-y|| \) is the euclidean norm.

It is well-known that the exponential map locally stretches distances for manifolds of nonpositive curvature. In [H-M] the following analogous result was obtained for manifolds of bounded curvature.

Proposition 2.2. Suppose \(K \leq b^2, b > 0 \), (respectively \(K \leq 0 \)) on a Riemannian manifold \(M \) with distance function \(d \). Let \(B_r(z) = \{ y : d(y, z) < r \} \) be a convex embedded ball centered at \(z \) in \(M \). Suppose further that \(r < \pi b^{-1}/2 \) (respectively \(0 < r < \infty \) when \(K \leq 0 \)). For any \(x, y \in B_r(z) \), if \(\hat{x} = \exp_z^{-1}x \) and \(\hat{y} = \exp_z^{-1}y \), then
\[d(x, y) \geq (2/\pi) ||\dot{x} - \dot{y}||\] respectively \[d(x, y) \geq ||\dot{x} - \dot{y}||\] when \(K \leq 0\). Here \(||\dot{x} - \dot{y}||\) is the euclidean norm in the tangent space \(M_z\).

Using Propositions 2.1 and 2.2 and the techniques of [H-M] we are able to prove the main result of this section.

Theorem 2.3. Let

\[\varphi = \sup_{x \in M} r_x.\]

1. If \(K \leq 0\), \(d^T(M) \geq \varphi/2\). In particular if \(\varphi = +\infty\), there exist point inverses of arbitrarily large diameters.

2. If \(K \leq b^2\), and \(a = \min\{\pi/2b, \varphi\}\), \(d^T(M) \geq 2a/(\pi + 2)\).

Proof. Fix any \(z \in M\) and let \(r_z\) the radius of convexity at \(z\). For any \(r > 0\) satisfying

\[r < \begin{cases} r_z & \text{if } K \leq 0 \\ \min\{r_n, \pi b^{-1}/2\} & \text{if } K \leq b^2, \end{cases}\]

and any \(\alpha, \frac{1}{2} \leq \alpha < 1\), suppose that

\((H)\) \(\text{diam } O_f(x) < (1 - \alpha)r\), all \(x \in M\).

Define \(U = f^{-1}[f(B_{a^2}(z))]\). Clearly \(U\) is open. We claim \(U\) is connected. Let \(V\) be a component of \(U\). Now it is known [C], [MO] that \(V\) maps onto \(f(U) = f(B_{a^2}(z))\). Hence, \(V\) intersects \(O_f(z)\). But since

\[\text{diam } O_f(z) < (1 - \alpha)r \leq \alpha r,\]

\[O_f(z) \subseteq B_{a^2}(z).\]

Furthermore by \((H)\),

\[B_{a^2}(z) \subseteq U \subseteq B_r(z).\]

Let \(U_{\perp} = \exp_z^{-1}U\). Then \(U_{\perp}\) is an open and connected subset of \(R^n = M_z\).

It can be verified that

\[U_{\perp} = \exp_z^{-1}f^{-1}[f(B_{a^2}(z))].\]

Consequently we can apply Proposition 2.1 to \(f_{\perp} = f \circ \exp_z: U_{\perp} \to Y\). Now

\[\{\dot{x} \in M_z \mid ||\dot{x}|| \leq \alpha r\} = \exp_z^{-1}B_{a^2}(z) \subseteq U_{\perp}\]

\[\subseteq \exp_z^{-1}B_r(z) = \{\dot{x} \in M_z \mid ||\dot{x}|| \leq r\}\]

The left-hand inclusion implies

\[D = \max\{\min\{||\dot{x} - \dot{y}|| \mid \dot{y} \in \partial U_{\perp} \mid \dot{x} \in U_{\perp}\} \geq \alpha r\} \text{ (Simply let } \dot{x} = 0)\]

Since \(B_r(z)\) is a convex, embedded ball with \(r < \pi b^{-1}/2\) when \(K \leq b^2\) \((r < \infty\) when \(K \leq 0\), we may apply Proposition 2.2. So
\begin{align*}
C &= \text{Max}\{\text{diam } O_r(x) \mid x \in \partial U_r\} \\
&\leq \begin{cases} \\
\pi/2 \text{Max}\{\text{diam } O_r(x) \mid x \in \partial U\} & \text{if } K \leq 0 \\
(1-\alpha)r & \text{if } K \leq b^2 \\
(1-\alpha)\pi r/2 & \text{if } K \leq b^2 \\
\end{cases}
\end{align*}

by (H).

By Proposition 2.1, \(D \leq C \). Consequently

\[\alpha < \begin{cases} \\
(1-\alpha)r & \text{if } K \leq 0 \\
(1-\alpha)\pi r/2 & \text{if } K \leq b^2 \\
\end{cases} \]

or

\[\alpha < \begin{cases} \\
1/2 & \text{if } K \leq 0 \\
\pi/(\pi + 2) & \text{if } K \leq b^2 \\
\end{cases} \]

Consequently, (H) is false for

\[a = \begin{cases} \\
1/2 & \text{if } K \leq 0 \\
\pi/(\pi + 2) & \text{if } K \leq b^2 \\
\end{cases} \]

So there exists an \(x \in M \) with \(\text{diam } O_r(x) \geq r/2 \) if \(K \leq 0 \); \(2r/(\pi + 2) \) if \(K \leq b^2 \).

It is possible to obtain a version of Theorem 2.3 in terms of injectivity radius. For a complete connected Riemannian manifold \(M \) define the injectivity radius \(\iota(M) \) by

\[\iota(M) = \sup \{d(x, C(x)) : x \in M\} \]

where \(C(x) \) denotes the cut locus of \(x \).

\textbf{Theorem 2.4.}

(1) If \(K \leq 0 \), \(d^T(M) \geq \iota(M)/2 \).

(2) If \(K \leq b^2 \), \(M \) is compact and \(a = \text{Min} \{\pi/2b, \iota(M)/2\} \), \(d^T(M) \geq 2a/\pi \).

\textbf{3. Estimate of Newman's diameter } \(d^T(S^n) \) \textbf{and related topics.} We use the notion of \textit{degree of a map} defined by Dress [D].

Let \(f: M^n \rightarrow Y \) be a pseudo-submersion. The \textit{branch set} \(B_f \) of \(f \) is defined as \(B_f = \{x \in M : f \text{ is not a local homeomorphism at } x\} \). By [C] or [M-R], \(M - f^{-1}(f(B_f)) \) is a dense open subset of \(M^n \).

\textbf{Lemma 3.1: Newman's Lemma} (Dress [D], McAuley-Robinson [M-R]). Let \(f: M \rightarrow Y \) be a pseudo-submersion, \(X \) a locally compact metric space, \(g: M \rightarrow X \) and \(j: Y \rightarrow X \) be a proper map such that \(g = j \circ f \). Let \(x \in X \) be such that

\[g^{-1}(x) \cap f^{-1}(f(B_f)) = \emptyset, \]
and \(y \in j^{-1}(x) \). If \(\text{Card} \ f^{-1}(y)=p \), then \(g \) is inessential at \(x \) for \(Z_p \); that is, the degree of \(g \) at \(x \), \(d(g, x) \), is zero (with \(Z_p \) as coefficients).

Theorem 3.2. Let \(M \) be a compact connected oriented topological \(n \)-manifold and \(f: M^n \to Y \) be a pseudo-submersion with \(\text{Card} \ O_f(x_0)=p>1 \) for some \(x_0 \in M^{-f^{-1}(f(B_f))} \). Suppose \(\varphi: M \to S^n \) is a map such that the \(\text{deg} \varphi \equiv 0 \) mod \(p \). If we denote \(\varphi(z) \) by \(\bar{z} \), then there exists \(x \in M \) such that the following holds:

\[
\sum_{z \in O_f(x)} \bar{z} = c \bar{x} \quad \text{in } R^{n+1} \quad \text{for some } c \leq 0.
\]

\[
\begin{cases}
\gamma = \pi & \text{if } \text{Card} \ O_f(x) = 2 \\
\sqrt{\gamma o \bar{z}} & \geq 2\pi/3, \quad \text{and } \sqrt{\gamma o \bar{z}} = \sqrt{\gamma o \bar{y}}, \quad \text{if } \text{Card} \ O_f(x) = 3 \quad \text{and}
\quad O_f(x) = \{x, y, z\}.

\quad \geq \pi - \cos^{-1}(1/(p-1)) > \pi/2 & \text{if } \text{Card} \ O_f(x) \geq 4
\end{cases}
\]

for some \(z \in O_f(x) \), where \(\sqrt{\gamma o \bar{z}} \) denotes the angle between \(o \bar{x} \) and \(o \bar{z} \), \(o \in R^{n+1} \) the origin, and \(S^n \) the standard unit sphere in \(R^{n+1} \).

Proof. (1) Suppose on the contrary, then \(\sum_{z \in O_f(x)} \bar{z} \equiv 0 \) for all \(x \) in \(M \).

Define a map \(g: M^n \to S^n \) by

\[
g(x) = \frac{\sum_{z \in O_f(x)} \bar{z}}{|\sum_{z \in O_f(x)} \bar{z}|}.
\]

Then for any \(x \in O_f(x) \), \(g(x) = g(x) \). Hence \(g \) induces a map \(j: Y \to S^n \) such that \(g = j \circ f \). It follows from Lemma 3.1 that \(g \) is inessential at \(g(x) \) for \(Z_p \).

On the other hand, by hypothesis there is a well defined homotopy \(H: M \times [0, 1] \to S^n \) between \(\varphi \) and \(g \) defined by

\[
H(x, t) = \frac{t \varphi(x) + (1-t)g(x)}{|t \varphi(x) + (1-t)g(x)|}.
\]

Hence, \(\text{deg} \varphi = \text{deg} g = d(g, g(x)) = 0 \mod p \). This is a contradiction.

(2) For any \(y, z \in O_f(x) \), set \(\theta_{yz}=\sqrt{\gamma o \bar{z}} \). Let \(\langle, \rangle \) be the standard inner product in \(R^{n+1} \). From (1) there exists an element \(x \) in \(M \) such that

\[
\langle \bar{x}, \bar{z} \rangle + \sum_{z \neq x, z \in O_f(x)} \langle \bar{x}, \bar{z} \rangle = c\langle \bar{x}, \bar{x} \rangle
\]

for some \(c \leq 0 \); that is,

\[
(\ast) \sum_{z \neq x, z \in O_f(x)} \cos \theta_{zx} = c - 1 \leq -1
\]

If \(\text{Card} f=2 \), it is easy to see from (\ast) that \(c=0 \), and \(\theta_{zx}=\pi \).

If \(\text{Card} f=3 \), then \(\cos \theta_{xy} + \cos \theta_{yx} = c - 1 \). From (1) we have

\[
|(1-c)\bar{x} + \bar{z}|^2 = |\bar{y}||^2.
\]

Hence \(\cos \theta_{yx} = \cos \theta_{xy} = (c-1)/2 \). That is, \(\theta_{xy} = \theta_{zx} \geq 2\pi/3 \). If \(\text{Card} f=p \geq 4 \), there exists at least one \(z \in O_f(x) \) such that \(\cos \theta_{zx} \leq -1/(p-1) \); that is, \(\theta_{zx} \geq \pi \).
Theorem 3.2 implies the following:

Corollary 3.3. (1) \(d_T^S(S^n) = \pi \), i.e., for any pseudo-submersion \(f: S^n \to Y \) with \(\text{Card } f = 2 \), there exists \(x \in S^n \) such that \(f^{-1}(f(x)) = \{x, -x\} \).
(2) \(d^S(S^n) = 2\pi/3 \).
(3) \((p-1)\pi/p \geq d^T(S^n) \geq \pi - \cos^{-1}(1/(p-1)) > \pi/2 \) if \(p \geq 4 \).
(4) \(2\pi/3 \geq d^T(S^n) > \pi/2 \).

Proof. In [K], the equivariant diameter \(D(M) \) and modulo \(p \) equivariant diameter \(D_p(M) \) have been defined. They are precisely defined by the pseudo-submersions \(\pi: M \to MG \) which are orbit maps of isometric actions of compact Lie groups \(G \) or \(G = \mathbb{Z}_p \) on \(M \) respectively. Hence \(D(M) \geq d^T(M) \) and \(D_p(M) \geq d^T_p(M) \) for some \(p \). But \(D(S^n) = 2\pi/3 \) and \(D_p(S^n) = (p-1)\pi/p \) if \(p \geq 3 \) by [K]. Hence, the result follows from Theorem 3.2 by applying it to the identity map \(S^n \to S^n \).

Remarks. (i) The statement (1) extends the following well known result: For any non-trivial involution \(g \) of \(S^n \), there exists \(x \in S^n \) such that \(gx = -x \).
(ii) By using the arguments of Milnor in [MI] we can also show the following: Let \(f: M \to Y \) and \(\bar{f}: \bar{M} \to \bar{Y} \) be pseudo-submersions with Card \(f = \text{Card } \bar{f} = 2 \), \(B_f = B_{\bar{f}} = \varnothing \), where \(M \) is a compact connected oriented \(n \)-manifold and \(\bar{M} \) a mod 2 homology \(n \)-sphere. Suppose there exists a map \(\varphi: M \to \bar{M} \) of odd degree. Then there exists \(x \in M \) such that \(\varphi \) \(O_f(x) = O_{\bar{f}}(\varphi x) \).

Theorem 3.4. Let \(M \) be a compact connected \(n \)-dimensional submanifold of \(R^{n+1} \), \(n \geq 2 \), and let \(y \in R^{n+1} - M \) be in a bounded component. Suppose \(f: M \to Y \) is a pseudo-submersion. Then there exists \(x \in M \) such that
(1) If Card \(f = 2 \), \(\{O_f(x), y\} \) lies on a line in \(R^{n+1} \).
(2) If Card \(f = 3 \), and \(O_f(x) = \{x, u, v\} \), then
\[
\angle xyu = \angle uvy = \angle vyx = 2\pi/3.
\]
In particular \(\{O_f(x), y\} \) lies in a 2-plane in \(R^{n+1} \).
(3) If Card \(f = p \geq 4 \), then \(\angle uvy \geq \pi - \cos^{-1}(1/(p-1)) > \pi/2 \) for some \(u, v \in O_f(x) \), and \(\{O_f(x), y\} \subset R^{p-1} \cap M \), for some \((p-1) \)-plane \(R^{p-1} \) of \(R^{n+1} \) (if \(n \geq p-2 \) passing through the origin.

Proof. Apply Theorem 3.2 to the map \(\varphi: M \to S^n \) defined by \(\varphi(x) = (y-x)/||y-x|| \) because deg \(\varphi = \pm 1 \). The equality in (2) follows from Corollary 3.3 (2).

4. Cohomology version of Newman’s theorem for pseudo-submersions

Let \(f: M \to Y \) be a pseudo-submersion. A subset \(A \) of \(M \) is called satur-
ated if \(A = O_f(A) \), where \(O_f(A) = \cup \{ O_f(x) : x \in A \} \), or equivalently \(A = f^{-1}(f(A)) \). Then there exists an open neighborhood \(V \) of \(x \) which is homeomorphic to \(R^n \) and \(f \mid V : V \to f(V) \) is a homeomorphism. Hence by excision we have

\[H_n(Y, Y - f(x); Z_p) \approx H_n(f(V), f(V) - f(x); Z_p) \approx Z_p, \]

where \(p = \text{Card } O_f(x) \).

We shall say a pseudo-submersion \(f : M \to Y \) satisfies the (LOA) (local orientable condition for \(A \)) if \(A \) is a closed saturated subset of \(M \), \(B = f(A) \) is closed in \(Y \) and such that the inclusion \(i_B : (Y, B) \to (Y, Y - x) \) induces an isomorphism

\[i_B^* : H_n(Y, B; Z_p) \to H_n(Y, Y - f(x); Z_p) \]

for some \(x \in M - f^{-1}(f(B_f)) \), Card \(O_f(x) = p \).

The following result extends the cohomology version of Newman's Theorem for group actions [B], [S] due to Smith.

Theorem 4.1. Let \(A \) be a closed subspace of a compact oriented \(n \)-manifold \(M \) such that \(H_n(M, A; Z_p) \approx Z_p \). Let \(\mathcal{U} \) be any open covering of \(M \) such that

\[H^n(K(\mathcal{U}), K(\mathcal{U} \mid A); Z_p) \to H^n(M, A; Z_p) \]

is surjective, where \(K(\mathcal{U}) \) denotes the nerve of the covering \(\mathcal{U} \). Then there does not exist a pseudo-submersion \(f : M \to Y \) satisfying (LOA) and such that each orbit of \(f \) is contained in some open set in \(\mathcal{U} \).

Proof. Suppose the conclusion is false. Then there exists a pseudo-submersion \(f : M \to Y \) satisfying (LOA) and each orbit \(O_f(x) \) is contained in a saturated open set \(V_x \) which is contained in some member of \(\mathcal{U} \). Let \(\mathcal{C} \mathcal{U} = \{ f(V_x) : x \in V \} \). Then \(f^{-1}(\mathcal{C} \mathcal{U}) \) is a refinement of \(\mathcal{U} \). By [B, p. 154], \(f^* : H^n(Y, B; Z_p) \to H^n(M, A; Z_p) \) is an epimorphism. But the Kronecker product induces a canonical epimorphism [G, p. 132]

\[\alpha : H^n(M, A; Z_p) \to H_n(M, A; Z_p)^* = \text{Hom}(H_n(M, A; Z_p); Z_p); \]

hence we have an isomorphism \(f_* : H_n(M, A; Z_p) \to H_n(Y, B; Z_p) \).

Let \(K = O_f(x) \), and \(O_k \subseteq H_n(M, M - K; Z_p) \) be the fundamental class which is the element such that for any \(z \in K \), the inclusion \(i_z : (M, M - K) \to (M, M - z) \) satisfies \(i_z^*(O_k) = 1, \) the identity element of \(H_n(M, M - z; Z_p) \approx Z_p \) (cf. [D]).

We have the following commutative diagram

\[
\begin{array}{ccc}
Z_p = H_n(M; Z_p) & \xrightarrow{i_*} & H_n(M, A; Z_p) \\
\downarrow & & \downarrow \\
H_n(M, M - K; Z_p) & \xrightarrow{i_z^*} & H_n(M, M - z; Z_p) = Z_p
\end{array}
\]
where all homomorphisms are induced by inclusions. Since \(k_\ast \) is an isomorphism for all \(z \) in \(K \), there exists an element \(a \) in \(H_n(M, A; Z_p) \) such that \(i_\ast(a) = O_K \). Now we consider the following commutative diagram

\[
\begin{array}{ccc}
H_n(M, A; Z_p) & \xrightarrow{f_\ast} & H_n(Y, B; Z_p) \\
\downarrow i_\ast & \approx & \downarrow i_\ast
\end{array}
\]

By definition, \(d(f, f(x)) = f_\ast(O_K) \) (cf. [D]). It follows that

\[
d(f, f(x)) = f_\ast i_\ast(a) = i_\ast f_\ast(a) \neq 0 .
\]

On the other hand, we can apply Lemma 3.1 to the map \(f \), with \(f = j \circ f \), to obtain \(d(f, f(x)) = 0 \), where \(j \) is the identity map. This is an obvious contradiction and the proof of the theorem is complete.

Corollary 4.2. Let \(M \) be a compact connected oriented \(n \)-manifold, and \(U \) an open covering of \(M \) such that

\[
(*) \quad H^q(|\sigma|; Z_p) = 0 \quad \text{for any } \sigma \in K(U) \text{ and any } q \geq 1 .
\]

Then there does not exist a pseudo-submersion \(f: M \to Y \) such that

1. \(i_\ast: H_n(Y; Z_p) \cong H_n(Y, Y-x; Z_p) \), where \(i_\ast: Y \to (Y, Y-x) \) is inclusion, \(x \in M - f^{-1}(f(B_\varepsilon)) \), Card \(O_f(x) = p \), and
2. Each orbit of \(f \) is contained in some member of \(U \).

Proof. The hypothesis (*) implies that

\[
H^q(K(U); Z_p) \cong H^q(M; Z_p)
\]

for all \(q \geq 0 \) by Leray's Theorem [G-R, p. 189].

As an example, if \(M \) is a compact connected oriented Riemannian manifold, and \(U \) consists of all open convex proper subsets of \(M \), then the condition (*) of Corollary 4.2 is satisfied.

References

Department of Mathematics
University of Massachusetts
Amherst, MA 01003
U.S.A.