Title	Singularities of 2-spheres in 4-space and cobordism of knots
Author	Fox, Ralph H. / Milnor, John W.
Citation	Osaka Journal of Mathematics. 3(2); 257-267
Issue Date	1966-12
ISSN	0030-6126
Textversion	Publisher
Relation	The OJM has been digitized through Project Euclid platform
	http://projecteuclid.org/ojm starting from Vol. 1, No. 1.

Placed on: Osaka City University

Fox, R.H. and Milnor, J.W. Osaka J. Math. 3 (1966), 257-267

SINGULARITIES OF 2-SPHERES IN 4-SPACE AND COBORDISM OF KNOTS¹⁾

RALPH H. FOX and JOHN W. MILNOR

(Received May 9, 1966)

Consider an oriented 2-dimensional manifold m imbedded as a subcomplex in a triangulated oriented 4-dimensional manifold M in such a way that the boundary of m is contained in the boundary of M and the interior of m is contained in the interior of M. We will assume that M is a "piecewise linear manifold": that is, the star neighborhood of any point should be piecewise linearly homeomorphic to a 4-simplex. One can measure the local singularity of the imbedding at an interior point x of m as follows. Let N denote the star neighborhood of The boundary $S = \partial N$ of N is a 3-sphere with an orientation inherited x in M. from that of M, and $k = m \cap \partial N$ is a 1-sphere with an orientation inherited from that of *m*. The oriented knot type κ of the imbedding of k in S is called² the singularity of the imbedding at x. When k is of trivial type in ∂N we may say that the singularity is 0 or that x is a non-singular point or that m is locally flat at x. A surface m is called *locally flat* if it is locally flat at each of its points.

REMARK. The singularity of m at x is clearly a combinatorial invariant of M,m,x; that is it is not altered if we subdivide M rectilinearly. We do not know whether or not this singularity is a topological invariant, except in the special case of a locally flat point. The topological invariance of the concept of local flatness is easily proved, making use of Dehn's lemma, $[12, \S28(i)]$.

Of course the local singularity can also be measured at a boundary point x. In this case ∂N is a 3-cell, $m \cap \partial N$ is a 1-cell spanning it, and the singularity is a type of spanning 1-cell. In this paper we shall consider only imbeddings whose boundary points are all non-singular.

Since a singular point must be a vertex in any triangulation of the pair $m \subset M$ the singular points are always isolated. If *m* is compact (as it will be from now on) there can therefore be only a finite number of singular points. For the rest of this paper *m* will be a 2-sphere and *M* will be the 4-dimensional euclidean space R^4 ; that is, the 4-sphere punctured at ∞ . The basic problem

¹⁾ This paper follows our announcement [3]. We wish to express our thanks to C.H. Giffen for help in the revision.

²⁾ These concepts are due to V.K.A. Guggenheim [5, §7. 32].

that motivated this paper is the following: Under what conditions can a given collection of knot types $\kappa_1, \dots, \kappa_n$ be the set of singularities of some imbedding of a 2-sphere m in the 4-space R^4 ?

Recall that the various types of knots are the elements of a commutative semigroup³ \mathcal{A} ; the operation of this semigroup, which has been variously designated "product", "sum", "composition", etc., will be denoted here simply by the symbol +. In section one we show that a collection $(\kappa_1, \dots, \kappa_n)$ can occur as the set of singularities of some imbedding if and only if the collection consisting of the single element κ , where $\kappa = \kappa_1 + \kappa_2 + \dots + \kappa_n$, occurs as the set of singularities of some imbedding. This reduces the basic problem to the following special case: Which knot types κ can occur as the only singularity of a 2-sphere m in \mathbb{R}^4 ? It is shown that a given κ can occur if and only if there is a locally flat 2-sphere m and a hyperplane J of \mathbb{R}^4 , which cuts m in two, such that $k = m \cap J$ is a knot of type κ in J. Such a knot $k \subset J$ has been called a slice knot and its type κ may be called a slice type (Compare [4, p. 135].) Clearly k is a slice knot if and only if it spans a non-singular 2-disk which lies completely within one of the two half-spaces bounded by J.

An example of a slice knot is illustrated in Figure 1. Depending on the number of twists, this figure can represent the knot type 6_1 or 8_{20} or 9_{46} , etc.. (The notation for knot types follows [13, p. 70]. For a proof that such a diagram represents a slice knot see [4, p. 172].)

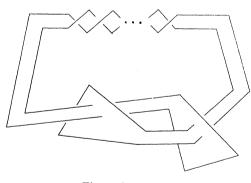


Figure 1.

Our basic question can now be reformulated as follows: Which knot types are slice types?

Although it is unreasonable to expect a complete and meaningful answer to this question, partial answers of significance can be looked for. In section two

³⁾ H. Schubert [14]. The semigroup \mathcal{A} is free commutative with the "prime" knot types as free generators.

it is shown that not every knot is a slice knot, inasmuch as⁴) the Alexander polynomial A(t) of a slice knot must be of the form $p(t) \cdot p(1/t)$ for some integral polynomial p(t).

As examples, consider the knots with seven or fewer crossings in the Alexander-Briggs table. The Alexander polynomials of these knots (see [1, p. 305]) are all distinct and, with one exception, are all irreducible. Hence these knots cannot be slice knots. The one exception is the stevedore's knot 6_1 , with polynomial

$$2-5t+2t^2 = (2-t)(1-2t)$$
.

We have already remarked that 6_1 is actually a slice knot.

In the third section it is shown that the sum $\kappa + (-\kappa)$ of a knot type κ and the type $-\kappa$ obtained from κ by reversing the orientation of both the knot k and the containing 3-sphere S is always a slice knot. This result makes possible the introduction of an abelian group \mathcal{G} whose elements are equivalence classes $\langle \kappa \rangle$ of knot types κ and whose operation + is inherited from the operation + of the abelian semigroup \mathcal{A} . When the equivalence relation \sim that repartitions the elements of \mathcal{A} into elements of \mathcal{G} is expressed in a more symmetrical form which we call *cobordism* it becomes evident that \mathcal{G} is in fact a (relative) cobordism group. In terms of this group the principal results of this paper as well as various outstanding problems may be clearly expressed.

1. Confluence of singularities

Consider a polyhedral 2-sphere m in the 4-space R^4 , with singular points x_1, \dots, x_n . Let $\kappa(x_1), \dots, \kappa(x_n)$ be the corresponding singularity types.

Theorem 1. The sum $\kappa(x_1) + \cdots + \kappa(x_n)$ of the singularities is the knot type of a slice knot.

Proof. Choose a polygonal arc $p \subset m$ which traverses all of the singular points x_i . Choose some fixed rectilinear triangulation of R^4 so that m and p are subcomplexes. Using this triangulation, let y_1, \dots, y_r be the vertices of the subcomplex p, listed in their natural order along p. Clearly each singular point x_i occurs as one of these vertices y_i .

Let N denote the star neighborhood of p in the first derived complex of R^4 , and let N_i denote the star neighborhood of the vertex y_i ; so that

$$N = N_1 \cup N_2 \cup \cdots \cup N_r.$$

⁴⁾ Since this polynomial condition was announced by us in 1957 several other necessary conditions have been established: [10].

Each N_j is a 4-cell and can be identified with the cone over the 3-sphere ∂N_j . Similarly the intersection $m \cap N_j$ is a 2-cell, and can be identified with the cone over $m \cap \partial N_j$. The knotted circle

$$m \cap \partial N_i \subset \partial N_i$$

represents the knot type of the singularity $\kappa(y_j)$.

Note that each intersection $N_j \cap N_{j+1} = \partial N_j \cap \partial N_{j+1}$ is a 3-cell spanned by the unknotted arc $m \cap N_j \cap N_{j+1}$. The cells N_j are mutually disjoint otherwise. From this it follows that their union N is a 4-cell. Furthermore, the circle

 $m \cap \partial N \subset \partial N$

represents the knot type of the sum $\kappa(y_1) + \cdots + \kappa(y_r)$. This is of course equal to $\kappa(x_1) + \cdots + \kappa(x_n)$.

Choose a base point x_0 on ∂N which does not belong to m. Choose a piecewise linear homeomorphism h from the sphere $S^4 = R^4 \cup \infty$ to itself which carries x_0 to the point at infinity, and carries $\partial N - x_0$ onto the hyperplane J. Then the image $h(m \cap \partial N)$ will be a knot $k \subset J$ representing the required knot type $\kappa(x_1) + \cdots + \kappa(x_n)$. Furthermore h(m-Interior N) will be a non-singular 2-disk which spans k, and otherwise lies completely on one side of J. Taking the union of this disk with its mirror image in J we obtain a non-singular 2-sphere m' which intersects J in the required knot k. This shows that k is a slice knot, and completes the proof.

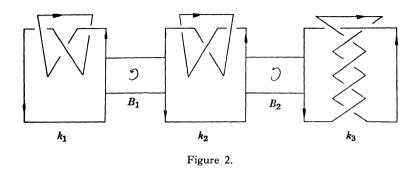
REMARK. It is of course essential that *m* should be a 2-sphere. Any knot of genus one can appear as the unique singularity type of a knotted *torus* in 4 space. Similarly it is essential that the containing 4-manifold should be a sphere or cell. In the (4-dimensional) complex projective plane, any torus knot of type p, p+1 can appear as the unique singularity type of an imbedded 2sphere. (Compare [7]: or consider the algebraic variety which is defined by the homogeneous equation $z_0 z_1^n = z_2^{n+1}$.)

Now consider the converse situation:

Theorem 1'. Let $\kappa_1, \dots, \kappa_r$ be knot types such that $\kappa_1 + \dots + \kappa_n$ is a slice type. Then there exists a 2-sphere $m \subset R^4$ with singularities of type $\kappa_1, \dots, \kappa_n$, and with no other singularities.

Proof. Represent the knot types $\kappa_1, \dots, \kappa_n$ by knots k_1, \dots, k_n which lie within disjoint cubes in the hyperplane $J \subset \mathbb{R}^4$, and which can be joined by rectangular bands $B_1, \dots, B_{n-1} \subset J$ as illustrated in Figure 2. Choose vertices v_1, \dots, v_n below the hyperplane J, so that the cones

$$v_1 k_1, \cdots, v_n k_n$$



will be pairwise disjoint. Then the union

$$D = v_1 k_1 \cup B_1 \cup v_2 k_2 \cup B_2 \cup \cdots \cup B_{n-1} \cup v_n k_n$$

is a 2-cell which lies in the lower half-space bounded by J, and which has just n singular points v_1, \dots, v_n , with singularity types $\kappa_1, \dots, \kappa_n$ respectively. The boundary of D is a knot $k \subset J$ representing the knot type $\kappa_1 + \dots + \kappa_n$.

By hypothesis, k is a slice knot. Hence there exists a non-singular 2-cell $D' \subset R^4$ which lies above the hyperplane J, and which spans k. That is:

$$\partial D' = D' \cap J = k \,.$$

The union

$$m = D \cup D'$$

is now the required 2-sphere.

To summarize, we have proved that a collection $\{\kappa_1, \dots, \kappa_n\}$ of knot types can occur as the collection of singularities of a 2-sphere in 4-space if and only if $\kappa_1 + \dots + \kappa_n$ is the type of a slice knot.

Here is another chracterization of slice knots. Let us call the singularity of m at x removable if there exists a modified 2-sphere m' which coincides with m except within an arbitrary small neighborhood U of x, and such that m' has no singularities within U.

Lemma 1. The singularity at x is removable if and only if it is a slice type.

Proof. Let N be the star neighborhood of x. If the singularity is removable, then the knot $m \cap \partial N \subset \partial N$ spans a non-singular 2-disk $m' \cap N$ within the 4-cell N. Hence it is a slice knot. Conversely if $m \cap \partial N$ spans a non-singular 2-disk $D \subset N$ then the 2-sphere

$$m' = (m - N) \cup D$$

will have no singularities within N (even on the boundary!). In order to replace

N by a smaller neighborhood, it is only necessary to subdivide before performing this construction. This completes the proof.

2. The polynomial condition

Theorem 2. If κ is a slice type, its Alexander polynomial is of the form⁵⁾ $A(t) \doteq p(t)p(1/t)$, where p(t) is a polynomial with integral coefficients.

Proof. Let *m* be a locally flat 2-sphere in the 4-space $R^4 \subset S^4$ and let *J* be a hyperplane of R^4 such that the knot $k=m \cap J$ is of type κ in *J*. Let *H* be one of the (closed) half-spaces into which R^4 is separated by *J*. A tubular neighborhood *V* of the 2-cell $D=m \cap H$ in *H* is⁶ of the form $D \times C$, where *C* denotes a 2-cell, and $V \cap J$ is just $k \times C$. Consider the closure *Q* of H-V in the sphere S^4 , and note that the boundary ∂Q of *Q* is the union of $D \times \partial C$ and the closure *W* of $J-V=J-(k \times C)$ matched along the torus $k \times \partial C$. It is easy to check that the 1-dimensional homology groups of ∂Q and *Q* are both infinite cyclic and that an isomorphism between them is induced by the inclusion $\partial Q \subset Q$. Let \tilde{Q} denote the infinite cyclic covering of *Q*. According to Milnor [9, Lemma 4] there is a "torsion invariant" $\Delta(\tilde{Q}) = a(t)/b(t)$ where a(t) and b(t) are non-zero polynomials with integral coefficients; it is well-defined up to sign and multiplication by powers of *t*.

The corresponding infinite cyclic covering of ∂Q is $\partial \tilde{Q}$. According to Milnor [9, Theorem 2] the torsion invariant $\Delta(\partial \tilde{Q})$ is also defined, and given by the formula

$$\Delta(\partial \widetilde{Q}) \doteq \Delta(\widetilde{Q}) \overline{\Delta}(\widetilde{Q})$$
 ,

where the bar indicates the operation $t \rightarrow 1/t$ of conjugation.

We can also compute $\Delta(\partial \tilde{Q})$ directly by referring to the subcomplex Wand its infinite cyclic covering \tilde{W} . According to Milnor [9, Theorem 4] the invariant $\Delta(\tilde{W})$ is defined, and

$$\Delta(\tilde{W}) \doteq A(t)/(t-1),$$

where A(t) denotes the Alexander polynomial of the knot $k \subset J$. Similarly, there is defined a relative torsion invariant $\Delta(\partial \tilde{Q}, \tilde{W})$, and

$$\Delta(\partial \widetilde{Q}) \doteq \Delta(\widetilde{W}) \Delta(\partial \widetilde{Q}, \widetilde{W})$$
.

Note that the pair $(\partial Q, W)$ can be reduced by excision to the pair $(D \times \partial C, k \times \partial C)$. Straightforward computation shows that

262

⁵⁾ The notation $A_1(t) \doteq A_2(t)$ means $A_1(t) = \pm t^n A_2(t)$ for some integer *n*.

⁶⁾ cf. [11].

$$\Delta(\partial \widetilde{Q}, \widetilde{W}) \doteq \Delta(D imes \partial \widetilde{C}, k imes \partial \widetilde{C}) = 1/(t-1)$$

Hence

$$\Delta(\tilde{Q})\overline{\Delta}(\tilde{Q}) \doteq A(t)/(t-1)^2$$
,

so that

$$A(t) \doteq c(t)c(1/t)$$

where c(t) denotes the rational function $(t-1)\Delta(\tilde{Q})$. Since the ring of integral L-polynomials is a unique factorization domain, c(t) can be expressed as the quotient a(t)/b(t) of two relatively prime polynomials. Let d(t) denote the greatest common divisor of a(1/t) and b(t). Then a(1/t)=p(1/t) d(t) and b(t)=q(t) d(t), and we have

$$c(t)c(1/t) = p(t)p(1/t)/q(t)q(1/t)$$
,

where the numerator and denominator are relatively prime. But we know that this quotient is, in fact, a polynomial. Consequently we must have $q(t) \doteq 1$, and so $A(t) \doteq p(1/t)$ as claimed.

REMARK. Our original proof of Theorem 2 was substantially the same as the proof sketched by H. Terasaka [15]. The proof presented here avoids the rather horrendous calculations of the original.

3. The knot cobordism group

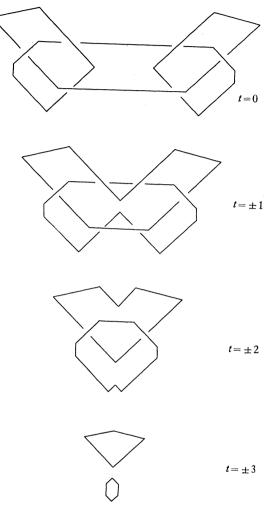
Lemma 3. If κ is any knot type, then $\kappa + (-\kappa)$ is a slice type.

Proof. This follows immediately by applying Theorem 1 to the 2-sphere in R^4 which is obtained by "suspending" a representative knot in R^3 . Alternatively, here is a direct proof. We will use coordinates x_1, x_2, x_3, x_4 in R^4 . Let kbe an oriented knot representative of κ that lies above the horizontal plane $x_3 =$ $x_4=0$ in the 3-space $x_4=0$. A representative k' of $-\kappa$ may be obtained by reversing the orientation of k and reflecting it in 3-space about this plane. Thus we see that in the 3-space $x_4=0$ there is a representative k'' of $\kappa+(-\kappa)$ that is symmetric about the horizontal plane $x_3=x_4=0$ and intersects it in just two points. Then the set of points (x_1, x_2, x_3, x_4) of 4-space such that $(x_1, x_2, |x_3| + |x_4|) \in k''$ forms a locally flat 2-sphere whose intersection with the hyperplane $x_4=0$ is just k''. (In Figure 3 some cross-sections of this 2-sphere by hyperplanes parallel to $x_4=0$ are shown for the case of the trefoil knot $\kappa=3_1$.)

Lemma 3'. If κ_1 and κ_2 are both slice types then so is $\kappa_1 + \kappa_2$.

Proof. Given spheres m_1 and m_2 with κ_1 and κ_2 as their respective only singularities, it is easy to construct a sphere m with κ_1 and κ_2 as its only singularities. The lemma therefore follows from Theorem 1.

263



Lemma 3". If λ and $\kappa + \lambda$ are both slice types then so is κ .

Proof. By Theorem 1' there is a 2-sphere m in 4-space R^4 that has only two singularities: κ at a point x and λ at a point y. But by Lemma 1 the singularity at y is removable. Hence there exists a 2-sphere m' whose only singularity is κ at x. This proves 3''.

Now let us write $\kappa \sim \lambda$ to mean that $\kappa + (-\lambda)$ is a slice type, and let us check that \sim is an equivalence relation. By Lemma 3 we have $\kappa \sim \kappa$. If $\kappa + (-\lambda)$ is a slice type then so is $-(\kappa + (-\lambda)) = \lambda + (-\kappa)$; hence $\kappa \sim \lambda$ implies $\lambda \sim \kappa$. If $\kappa + (-\lambda)$ and $\lambda + (-\mu)$ are slice types then $(\kappa + (-\lambda)) + (\lambda + (-\mu)) = \lambda$

 $(\kappa + (-\mu)) + (\lambda + (-\lambda))$ is a slice type by Lemma 3'. Since $\lambda + (-\lambda)$ is a slice type according to Lemma 3, it follows from Lemma 3" that $\kappa + (-\mu)$ must be a slice type. Thus $\kappa \sim \lambda$ and $\lambda \sim \mu$ implies $\kappa \sim \mu$.

Let us write $\langle \kappa \rangle$ for the equivalence class determined by the type κ . It follows easily from Lemma 3' that the sum operation

$$\langle \kappa \rangle + \langle \lambda \rangle = \langle \kappa + \lambda \rangle$$

is well defined. Thus the set \mathcal{Q} of equivalence classes inherits the operation+ from the semigroup \mathcal{A} , and with respect to this operation forms an abelian group. The identity element of this group is the class $\langle 0 \rangle$ of slice knots, and the inverse of a class $\langle \kappa \rangle$ is the class $-\langle \kappa \rangle = \langle -\kappa \rangle$.

Theorem 3. In order that $\kappa_0 \sim \kappa_1$ it is necessary and sufficient that there exist in the 4-dimensional slab $0 \le x_4 \le 1$ of R^4 a locally flat annulus A whose boundaries are knots k_0 in the hyperplane $x_4=0$ and k_1 in the hyperplane $x_4=1$ representing the types κ_0 , κ_1 respectively, the orientations being such that k_0 is homologous to k_1 within A.

Proof. If such an annulus A exists, then choosing a vertex v below the hyperplane $x_4=0$ and choosing a vertex w above the hyperplane $x_4=1$, the cones vk_0 and wk_1 will be disjoint from each other and from the interior of A. The union

$$m = vk_0 \cup A \cup wk_1$$

is then a 2-sphere with just two singularities: κ_0 at v and $-\kappa_1$ at w.

Conversely, given a 2-sphere with just two singularities, it is not difficult to move it until it intersects the slab $0 \le x_4 \le 1$ in a non-singular annulus whose boundary curves represent the appropriate knot types.

In view of this theorem we may call the equivalence relation \sim cobordism, and the group \mathcal{G} the *knot cobordism group*. (Similar cobordism groups for higher dimensional differentiable knots have been studied by A. Haefliger, M. Kervaire and J. Levine. See for example [6].)

Since there are knot types (many of them) that do not satisfy the polynomial condition of §2, the group \mathcal{Q} is non-trivial. Actually \mathcal{Q} is not even finitely generated; this can be seen, for example, by observing that there are an infinite number of knots of genus 1, whose polynomials are quadratic, irreducible and distinct from one another.

Murasugi [10] has shown that the signature of the quadratic form associated with a knot is a cobordism invariant⁷. This implies in particular that the clover leaf knot 3_1 determines an element of infinite order in \mathcal{Q} . It is not known

⁷⁾ This is strikingly reminiscent of the situation in the classical Thom cobordism theory.

whether or not the quotient group

 \mathcal{G} /(elements of finite order)

is finitely generated.

Any invertible, amphicheiral⁸⁾ knot that is not a slice knot determines in \mathcal{G} an element of order 2. An example is provided by the figure eight knot 4_1 . However it is not known whether or not \mathcal{G} has any elements of order>2. Neither is it known whether an element of order 2 is necessarily determined by an amphicheiral knot.

An analogous concept of cobordism between links can also be studied [4, 10]. Among the cobordism invariants of a link are the higher order linking numbers $\mu(i_1, \dots, i_r)$ of reference [8]. (Unpublished.)

PRINCETON UNIVERSITY AND KOBE UNIVERSITY THE INSTITUTE FOR ADVANCED STUDY

Bibliography

- [1] J.W. Alexander: Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), 275-306.
- [2] R.H. Crowell and R.H. Fox: Introduction to knot theory, Ginn, 1963.
- [3] R.H. Fox and J.W. Milnor: Singularities of 2-sphere in 4-space and equivalence of knots. (Abstract) Bull. Amer. Math. Soc. 63 (1957), 406.
- [4] R.H. Fox: A quick trip through knot theory; Some problems in knot theory, Topology of 3-manifolds, M.K. Fort, ed., Prentice-Hall, 1962, 120–176.
- [5] V.K.A. Guggenheim: Piecewise linear isotopy and embedding of elements and spheres. Proc. Lond. Math. Soc. 3 (1953), 29–53, 129–152.
- [6] A. Haefliger: Knotted (4k-1)-spheres in 6k-space, Ann. of Math. 75 (1962), 452-466.
- [7] M. Kervaire and J.W. Milnor: On 2-spheres in 4-manifolds, Proc. Nat. Acad. Sci., U.S.A. 47 (1961), 1651–1657.
- [8] J.W. Milnor: *Isotopy of links*, Algebraic geometry and topology (Lefschetz symposium), Princeton Math. Series. 12, 1957, 280-306.
- [9] J.W. Milnor: A duality theorem for Reidemeister torsion. Ann. of Math. 76 (1962), 137-147.
- [10] K. Murasugi: On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387–422.
- [11] H. Noguchi: A classification of orientable surfaces in 4-space, Proc. Japan Acad. 39 (1963), 422-423.
- [12] C.D. Papakyriakopoulos: On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957), 1–26.

266

⁸⁾ Compare [2, pp. 8–11] or [16].

- [13] K. Reidemeister: Knotentheorie, Ergebnisse der Math. Vol. 1, No. 1 (reprint Chelsea, 1948, New York).
- [14] H. Schubert: Die eindeutige Zerlegbarkeit eines Knotens in Primknoten.
 Sitzungsber. Heidelberger Akad. Wiss. Math. Nat. Kl. 1949, no. 3 (1949), 57-104.
- [15] H. Terasaka: On null-equivalent knots. Osaka Math. J. 11 (1959), 95-113.
- [16] H.F. Trotter: Non invertible knots exist, Topology 2 (1963), 275-280.