

大阪市立大学大学院創造都市研究科

博士学位論文

Development of a Framework for Post-Disaster Road

Traversability Mapping: An Integrated Approach Using GPS

Track Sharing and Map-matching

（災害後の経路地図作成フレームワークの開発： GPS 軌跡情報の

共有とマップマッチングを用いた統合的アプローチ）

2017年 09月

大阪市立大学大学院創造都市研究科

創造都市専攻都市情報環境研究領域

D13UD502

于 文龍 (Yu Wenlong)

Development of a Framework for Post-Disaster Road

Traversability Mapping: An Integrated Approach Using GPS

Track Sharing and Map-matching

（災害後の経路地図作成フレームワークの開発： GPS軌跡情報の

共有とマップマッチングを用いた統合的アプローチ）

2017年 09月

大阪市立大学大学院創造都市研究科

創造都市専攻都市情報環境研究領域

D13UD502

于 文龍 (Yu Wenlong)

キーワード: 位置情報サービス, 全地球測位サービス,遅延耐性ネットワーク, マップマッチング，モバイ

ル端末，防災

Keywords: Location Based Service (LBS), Global Positioning System (GPS), Delay Tolerant Network

(DTN), Map-matching, Mobile device, Disaster prevention

 i

Abstract

The main motivation in undertaking this research was to address some of the practical

issues that were widely reported during major disaster situations such as the 11 March, 2011

Tohoku earthquake in Japan. Apart to great loss of life and property in the near vicinity of the

earthquake and the subsequent tsunami event, metropolitan areas such as Tokyo experienced

disruption of train services, electrical outages and inaccessibility to Internet services. As a

result a vast number of commuters were stranded and compelled to proceed to their

destinations using unfamiliar routes and transportation modes. Supporting stranded

commuters during and soon after earthquake disasters or other emergency situations have

been considered as one of the most important issues for ensuring safety of citizens. It is,

therefore, necessary to develop a near real-time traversability mapping service that can be

available during or soon after the disaster.

In this research, a workflow for road traversability mapping service was implemented

and its performance was evaluated. The traversability mapping workflow is basically

designed to perform GPS data collection and sharing between nearby devices when Internet

connectivity is unavailable. Mobile Ad-hoc Network (MANET) and Delay Tolerant Network

(DTN) were investigated using Android application developed for sharing GPS tracks. The

application was tested using 6 Android devices in urban and semi-urban areas in Osaka to

evaluate feasibility and efficacy. In order to evaluate a performance with large number of

devices, a simulation experiment using the NS-2 simulator was carried out. The field and

simulation experiment demonstrate the effectiveness of using a using a combination of

MANET and DTN for sharing and aggregation of GPS tracks. The simulation experiment also

revealed that in densely populated areas, around 2000 devices could provide complete

coverage of entire road network in 60 minutes.

 ii

In the next step, pre-processing of GPS tracks collected by individual devices was

considered, in order to minimize volume of data transfer over Ad-hoc networks where

bandwidth is limited. An Android application for filtering GPS tracks, sharing between

mobile devices and aggregation of data was developed. GPS filtering was implemented based

on standard parameters such as number of GPS satellites used for positioning, GPS accuracy

and Horizontal Dilution of Precision (HDOP) to eliminate low accuracy GPS data. The

application also allows for uploading the aggregated data to the server for further processing

when the Internet connection becomes available.

A post-processing workflow was implemented for generating updated road traversability

map using the aggregated GPS tracks. The post-processing consists of a line simplification

based on Douglas-Peucker algorithm and map-matching with existing road network using the

Hausdorff distance algorithm. Line simplification was applied reduce the data in further

processing and map-matching to remove outliers and generate a navigable traversability road

network. Performance of map-matching algorithm was evaluated using data collected in two

field campaigns in Yamate-cho, Suita City and Sumiyoshi-ward, Osaka City, Japan.

Combined use of line simplification and map-matching algorithm was found to provide

desired results to achieve the final objective.

Subsequently, as and when new GPS tracks are loaded to the server, the traversability

maps are automatically updated by running the post-processing program on the server. The

updated road traversability maps are published as Web Map Service (WMS) using GeoServer

and available as a raster layer on any mobile device or computer that is connected to Internet.

The traversability road network is stored in a PostgreSQL/PostGIS spatial database and

routing functionality is implemented using the pgRouting library to facilitate in guiding users

from their present location to target destination.

Map tiles are also generated automatically to support offline use. The road traversability

map tiles can be either downloaded when Internet connectivity is available or the tiles can be

 iii

share among devices connected though the Ad-Hoc network. As a future work, it is planned to

incorporate off-line routing functionality using an embedded database. Lastly, to cater to

users who may not have access to smart phone, a Raspberry Pi based digital signage system is

deployed to facilitate display the traversability map for public viewing.

The data processing workflow implemented as a part of this research helps overcome

several of the limitations of previous research. Some salient features that distinguish this

research from previous works are a) Usability by stranded commuters using public

transportation rather than private automobile. This is an important factor especially in urban

areas in Japan where public transportation is more widely used than private automobiles. b)

Most of the functionality is availability both in online as well as offline mode and the system

is usable even when Internet connectivity is unavailable. c) The entire workflow is

implemented using Open Source software and libraries and, therefore more amenable for

future enhancements and customization.

As a future work, it is necessary to consider ways and means to incorporate additional

contextual information to the traversability maps to make them more intuitive. Further,

additional field experiments or simulation with large number if field devices need to be

undertaken to evaluate scalability and robustness of the proposed system. Lastly, it will also

be useful to consider low-cost gateway accepting the inbound data sent by field devices and

outbound communication to a process running in server and further enhance operability in

offline mode.

 iv

Acknowledgements

My profound gratitude goes to all the people who assisted and support me during my

doctoral course. First of all, I would like to express the sincere gratitude and appreciation to

my supervisor, Prof. Venkatesh Raghavan for his guidance, advice and moral support. His

untiring attention made it possible for me do this work as a part of my doctoral course and

also helped me mature as researcher during my tenure at the Graduate School for Creative

Cities, Osaka City University.

I sincerely appreciate Professor Hiroyuki Ebara for his critical advice on thesis

composition and consistent support. I acknowledge Associate Prof. Go Yonezawa and

Associate Prof. Daisuke Yoshida for providing constant supports and a lot of encouragements

throughout my doctoral course. I would also like to thank Professor Xianfeng Song for many

supports, especially on map-matching algorithms. I could not have attained doctoral research

objectives if their consistent help was not there.

I sincerely appreciate the Nishimura International Scholarship Foundation for granting

me Nishimura scholarship to facilitate my doctoral course study at Osaka City University. In

addition, I would like to thank the Ohtsuki Memorial Scholarship Trust Fund for Asian and

African Students for granting me Ohtsuki Memorial scholarship to facilitate my master

course study at Kansai University.

Thank you all to OSGeo Japan team for providing me a lot of great opportunities, ideas

on projects such as Geopaparazzi. I think I have been grown up with their community, many

thanks to Mr. Hirofumi Hayashi for supporting Geopaparazzi Cloud codes. I sincerely thank

Mr. Naoki Ueda for his invaluable help in preparing the journal manuscript in language and

writing style.

 v

I would like to thank also my colleagues Dr. Poliyapram Vinayaraj, Dr. Tran Thi An and

Dr. Raito Matsuzaki who always reviewing my work on suggesting several improvements.

Thanks also to all members of GIS laboratory at the Osaka City University and AL laboratory

at Kansai University for their supports and encouragements.

Finally, my special thanks go to my family for getting me through this period and always

supporting me. Especially, my wife Mrs. Shuang Sun for encouraging and support me any

time, anywhere with deep affection. I would like to thank all my Japanese friends who made

my life in Japan easy and very pleasant that keep me in good shape mentally and physically.

 vi

Contents

Abstract .. i

Acknowledgements .. iv

Contents .. vi

List of Figures ... viii

List of Tables .. x

List of Abbreviations .. xi

Chapter 1 Introduction ... 1

1.1 Review of Related Research ... 3

1.2 Research Objectives .. 5

1.3 Thesis Outline ... 6

Chapter 2 Ad-hoc Network for GPS Track Sharing .. 8

2.1 Introduction ... 8

2.2 Mobile Ad-hoc Network and Delay Tolerant Network .. 8

2.2.1 Mobile Ad-hoc Network ... 9

2.2.2 Delay Tolerant Network ... 9

2.3 Sharing Location Information .. 10

2.4 Field Experiment... 11

2.4.1 Environment for Field Experiment .. 12

2.4.2 Methods for Field Experiment .. 12

2.4.3 Results of Field Experiment.. 13

2.5 Simulation Experiment .. 13

2.5.1 Environment for Simulation Experiment ... 14

2.5.2 Methodology of Simulation Experiment .. 16

2.5.3 Results of Simulation Experiment ... 18

Chapter 3 Data Processing for Road Traversability Map .. 21

3.1 Introduction ... 21

3.2 Acquiring and Sharing Location Data using Android application................................... 22

3.3 OpenStreetMap Data .. 24

 vii

3.3.1 Import OSM Road Network Data into Database ... 25

3.4 Line Generalization Using Douglas-Peucker Algorithm .. 26

3.5 Map-matching Using Hausdorff Distance Algorithm ... 28

3.6 Field Experiment... 30

3.6.1 Environment of Field Experiment ... 30

3.6.2 Results of Field Experiment .. 31

Chapter 4 Map Services for Stranded Commuters .. 34

4.1 Map Services for Stranded Commuters ... 34

4.1.1 Publishing Post-Disaster Road Traversability Map using GeoServer WMS 34

4.1.2 Digital Signage Service for Stranded Commuters ... 36

4.2 Sharing Recorded GPS Tracks using Geopap-cloud Web Service 37

4.3 Deploying Routing using Road Traversability Map ... 38

4.4 Publishing Offline Road Traversability Map using Tile Map .. 40

4.5 Offline Tile Map Sharing using MANET ... 41

Chapter 5 Summary and Discussions ... 43

Chapter 6 Conclusions and Future Work ... 47

References .. 51

Appendix A .. 82

Appendix B .. 92

Appendix C .. 115

 viii

List of Figures

 Chapter 1

Figure 1.1: The framework of post-disaster road traversability mapping system 58

Figure 1.2: Flowchart showing post-disaster road traversability workflow 59

Chapter 2

Figure 2.1: Assimilating map data from multiple users .. 60

Figure 2.2: Map of study area around the Asahi Ward, Osaka City………………………….. 60

Figure 2.3: Simulated GPS tracks obtained for Asahi Ward, Osaka City ………………….. 61

Figure 2.4: Completion of mapping related to time (2000nodes～3000nodes) 61

Figure 2.5: GPS data transfer time .. 62

Figure 2.6: Packet reception rate ... 63

Chapter 3

Figure 3.1: Screenshots of Android application shows data collection, filtering and sharing

to server. (a) Location data information (b) NMEA data store on a device (c) Automatic

network (d) Update location data to server construction ..……………………………………..63

Figure 3.2: OSM data around Sumiyoshi-ward, Osaka City displayed in QGIS 64

Figure 3.3: Road network superimposed over OSM in QGIS ..64

Figure 3.4: Line simplification steps in Douglas-Peucker algorithm 65

Figure 3.5: Results of Douglas-Peucker line simplification in Osaka City area 65

Figure 3.6: Study area (a) Yamate-cho, Suita City and (b) Sumiyoshi-ward, Osaka city in (c)

Osaka Fu ….………………………………………………………………………………………….. 66

Figure 3.7: GPS tracks collected using six mobile devices in (a) Yamate-cho, and (b)

Sumiyoshi-ward ..67

Figure 3.8: Roads networks and buffered GPS tracks before map-matching (a) Yamate-cho,

and (b) Sumiyoshi-ward………………………………………………………………………… 68

Figure 3.9: Results of map matching (a) Yamate-cho, and (b) Sumiyoshi-ward based

map-matching ……………………………………………………………………………….……….. 69

 ix

Chapter 4

Figure 4.1: GeoServer connecting to PostGIS database ... 70

Figure 4.2: Road traversability map displayed as WMS layer in GeoServer 70

Figure 4.3: Illustration of Raspberry Pi based digital signage system …..…………………. 71

Figure 4.4: Sharing GeoServer WMS layer using Concerto signage system ………………. 72

Figure 4.5: View of road traversability map in Concerto signage system............................. 72

Figure 4.6: Sharing recorded GPS tracks using Geopap-Cloud .. 73

Figure 4.7: GPS tracks are displayed in Geopap-Cloud ... 73

Figure 4.8: Shortest path using pgRouting between point A and B inside the traversability

road map area a) Normal situation b) Using traversability road map ………………………. 74

Figure 4.9: Shortest path using pgRouting between point A and B outside the traversabilit

road map area a) Normal situation b) Using traversability road map …………………….… 75

Figure 4.10: Illustration of tile map... 76

Figure 4.11: Map tiles of traversability road map ...…………….………………….……………76

Figure 4.12: Tiled traversability road map is displayed in Geopaparazzi ..………….………77

 x

List of Tables

Chapter 2

Table 2.1: Parameters used for field experiments ... 78

Table 2.2: Parameters used for simulation experiments .. 78

Chapter 3

Table 3.1: Sample of acquired location data .. 79

Table 3.2: Road network attribute data used for road traversability mapping system 80

Table 3.3: Parameters used for field experiments ... 80

Table 3.4: Results of field experiments .. 81

 xi

List of Abbreviations

API

DBMS

DOP

Application Programming Interface

Database Management System

Dilution of Precision

DTN

FANET

FOSS4G

Delay Tolerant Network

Flying Ad-hoc Network

Free and Open Source Software for Geospatial

GIS Geographical Information System

GPS Global Positioning System

GPX GPS eXchange Format

GSI Geographical Survey Institute

HDOP Horizontal Dilution of Precision

LBS

OGC

OSM

LBS Location Based Service

Open Geospatial Consortium

OpenStreetMap

MANET Mobile Ad-hoc Network

NMEA The National Marine Electronics Association

NS-2

TTL

Network Simulator Version 2

Time to Live

 xii

UAV

VANET

Unmanned Aerial Vehicle

Vehicular Ad-hoc Network

WMS

WMTS

Web Map Service

Web Map Tile Service

 1

Chapter 1

Introduction

In recent years, with the development of mobile communication technology

and Geographic Information System (GIS), location-based services are become

extensively important in day-to-day life. Nowadays, geospatial technology is

widely used for disaster management and prevention endeavors. Location

information based mapping tools are developing rapidly and can be used widely in

the field of disaster relief.

By the factor of geographical location, natural disasters are inevitable in

Japan. Recently, Great Hanshin-Awaji Earthquake Disaster in 1995 and The

Tohoku Earthquake in 2011 caused huge damages1. The Cabinet Office of the

Government of Japan has reported that the probability of occurrence of the

Nankai Megathrust Earthquakes with in the next 30 years reaches 70%2. Apart

from great loss of life and property in the near vicinity of the earthquake and the

subsequent tsunami event, metropolitan areas such as Tokyo experienced

disruption of train services, electrical outages and inaccessibility to Internet

services. As a result a vast number of commuters were stranded and compelled to

proceed to their destinations using unfamiliar routes and transportation modes.

Supporting stranded commuters during and soon after earthquake disasters or

1 http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h23/pdf/n0010000.pdf

2 http://www.bousai.go.jp/jishin/nankai/tyosabukai_wg/pdf/h281013shiryo- 03.pdf

 2

other emergency situations have been considered as one of the most important

issues for ensuring safety of citizens. It is, therefore, necessary to develop a near

real-time traversability mapping service that can be available during or soon after

the disaster.

Recently, location based mapping tools have been developing rapidly and can

be applied widely in the field of disaster relief. For instance, during The Tohoku

Earthquake in 2011, an automobile manufacturing company demonstrated the

use of near real-time Floating Cellular Data to provide usable routes and shared

them to drivers 3 . When road conditions are altered by natural disaster,

distributing information of blocked road to emergency vehicle is very important.

However, it is difficult to do so if telephone or the Internet is down or busy. It is,

therefore, necessary to develop a real time information sharing system under

off-the-network situation.

The impact of the disaster can be significantly reduced if a post-disaster road

traversability map is provided to the stranded commuters. In order to address

post-disaster navigation problems that may occur not only in Japan but also in any

parts of the world, we propose a system for post-disaster road traversability

mapping. This will support the stranded commuters using Mobile Ad-hoc Network

(MANET) 4 , Delay Tolerant Network (DTN) 5 , GPS data sharing and

map-matching.

3 http://www.drs.dpri.kyoto-u.ac.jp/projects/jitsumusha/18/09_amano.pdf.

4 http://itl.nist.gov/div892/www/wahn_mahn.shtml

 3

1.1 Review of Related Research

This section describes the previous research attempts to attain efficient

post-disaster road traversability map, merits and demerits of the available

systems. Recently, several researchers have used GIS for better disaster relief

support. Previous researches on post-disaster traversability mapping were mainly

based on Internet availability (Weiser et al., 2007). Further on, researches were

focused on developing a disaster evacuation guidance method even when Internet

is down or busy (Fujihara et al., 2013) using mobile gaming device. Nonetheless,

the previous research attempts were not to develop a near real-time post

traversability mapping. The improvements made in the present research as

compared with previous researches are described below.

a) Estimating disaster situation: Minamimoto et al., (2010) used location

information and data of buildings based on communication log among mobile

devices and GPS log of devices. The objective of their research was to estimate

geographic information and building shape after disaster. However, the

limitation in this research is that it is unsuitable for large areas due to time

constraints. Their simulation result shows the time required to collect data

logs with consistent estimation quality increases logarithmically with increase

in geographical extent of the target. Therefore, this research was taken up

considering the need to maintain estimation quality with in a given time

constraint.

5 http://ipnsig.org/wp-content/uploads/2012/07/DTN_Tutorial_v2.03.pdf

 4

b) Disaster evacuation guidance method: Data used for Fujihara et al., (2013) is

passing-by-communication for mobile device, which is popularly used in

mobile game devices. The objective of the research was to map the near

real-time routes to evacuation centres after disaster and also examine the

condition of the evacuation centres. Evacuation staff would collect information

about damaged place, and share by passing-by-communication mechanism.

Device uses Bluetooth communication and shows evacuating route that avoid

damaged places. The limitation of this system is that the user needs to

download map and location of evacuation places before using the application.

Therefore, if disaster occurs, when people are not at their usual commuting

route, they may not be able to use system.

c) Real-time urban traffic monitoring: Shi et al., (2010) collecting GPS traced

data from GPS enabled vehicles on road networks, and update traffic condition

such as traffic jams in near real-time. The proposed method utilizes GPS track

data to successfully distinguish between traffic signal and jam. Also,

experiment was done with GPS taxi scheduling data of Shanghai, China, and

evaluate efficacy of this system. The lacuna in this system is that data is based

on vehicle’s movement, in case of traffic jam and many vehicles are stationary,

the system may not be able to collect adequate data.

The major improvements made in this research compared to above mentioned

approaches are that the proposed workflow can create post-disaster road

traversability map for wide area by using GPS enabled mobile devices, without

the need to download data. Communication is carried out on MANET and DTN,

 5

which is not dependent on public network, so this research is applicable for

disaster situation even when network connectivity is unavailable. In addition,

this research also proposes a method to collect data using pedestrian stranded

commuters and construct road information where people can walk through, even

under traffic jam, and provide the post-disaster road traversability map during

disaster situation that affect relatively large areas.

1.2 Research Objectives

With the aim of providing a viable solution for supporting stranded

commuters and resolving some of the limitations in existing solutions, this

research is taken up with the following main objectives:

a) Development of mechanism for exchange of GPS tracks over MANET and

DTN and evaluate the efficacy and performance for field data aggregation in

urban and semi-urban areas.

b) Establish a workflow for processing of aggregated GPS data and enable the

generation navigable road traversability maps with due consideration of

scenarios during and after disaster or emergency situations.

c) Providing multiple conduits for information delivery to address typical

post-disaster issues such as power outages, disruption in network connectivity

and lack of available devices to access information.

d) Facilitating online and offline usability of traversability maps and value

addition through incorporation of routing services.

 6

e) Deploying a comprehensive framework for data gathering, processing and

sharing of results based on Open Source software, Open Data and Open

Standards.

The framework and data processing workflow of the proposed post-disaster

road traversability mapping system is shown in Figure 1.1 and Figure 1.2

respectively.

1.3 Thesis Outline

This dissertation is divided into six Chapters and organized as follows:

• Chapter 1, the present Chapter provides an introduction to the background of

the post-disaster road traversability mapping system, objective of the study

and thesis outline.

• Chapter 2 explains the implementation of networks and communication

characteristics of MANET and DTN using the NS-2 simulator. Further in

order to demonstrate the effectiveness of the proposed networks, field

evaluation and simulation experiment were carried out at two study areas in

Osaka City, Japan.

• Chapter 3 explains some data filtering functions to mitigate positioning errors.

Further, the implementation of map-matching algorithms for post-disaster

road traversability mapping is presented and the map-matched results are

also demonstrated.

 7

• Chapter 4 outlines the application examples of post-disaster road

traversability mapping system. It also describes deployment of interoperable

Web services for publishing created post-disaster road traversability map and

sharing recorded GPS tracks.

• Chapter 5 discussed several advantages and problems related to the system

framework. Here, the functions and workflow of the system are explained in

detail.

• Chapter 6 enumerates the salient features, discusses the main conclusions

that can be drawn from this research and also elucidates some suggestions for

future works.

 8

Chapter 2

Ad-hoc Network for GPS Track Sharing

2.1 Introduction

Chapter 1 presented the problem to be addressed, aims of this study and the

outline of the proposed solution. This Chapter explains the implementation of

network, communication characteristics of MANET and DTN. To demonstrate the

effectiveness of the proposed method, a field evaluation and simulation

experiment has been performed. The efficacy and performance of the system was

difficult to demonstrate using large numbers of mobile devices in the field

experiment. Therefore, simulation experiment was carried out with large

numbers of simulated devices to evaluate the network performance.

2.2 Mobile Ad-hoc Network and Delay Tolerant Network

In this research, data sharing has been performed using MANET and DTN.

Even when Internet connection is unavailable, the proposed system can get data

from nearby devices connected through Ad-hoc networks. Further, DTN used to

transfer data even in the situation of network interruption or disconnection, such

as in the situation of earthquake disaster event. In the present case, we propose a

Hybrid DTN-MANET routing protocol (HYMAD) (Whitbeck et al., 2010) that can

integrate and use both MANET and DTN. In addition, as shown in Figure 2.1,

 9

combining each GPS tracks logged in individual devices can help create

post-disaster road traversability map.

2.2.1 Mobile Ad-hoc Network

MANET is a type of Ad-hoc network that can configure itself and change

location on the fly (Joshi, 2010). Ad-hoc network can be built anytime, anywhere

using any wireless enabled devices and connect various wireless networks to

provide end-to-end connectivity. A number of Ad-hoc networks have been proposed

by several authors, for instances, a Vehicular Ad-hoc network (VANET) (Wang and

Li, 2009) consists of smart vehicles on the road and provides communication

services among nearby vehicles or with roadside infrastructure. It is envisioned to

provide numerous interesting services. A Flying Ad-Hoc Network (FANET)

(Bekmezci et al., 2013) has been developed for creating Ad-hoc network connecting

for UAV (Unmanned Aerial Vehicle). One of the most important design problems

for multi-UAV system is the communication between them. However, mobile

devices based Ad-hoc is more reliable in terms communication.

2.2.2 Delay Tolerant Network

DTN was originally proposed to contact satellites and transfer data between

satellites and station in earth. Further, DTN has been extensively used to solve

communication issues between mobile devices. DTNs were designed to overcome

issues about connectivity, such as mobility, poor infrastructure, and the

short-range of radio communications. In fact, there is an experimental project

 10

such as TIER6 proposed to provide an Internet connection in sparsely populated

areas without communicational infrastructures. However, network throughput

will decrease with increase in number of devices and there is a potential to high

network delays. Thus, there are a few proposed methods to increase contact

opportunities. For example, using Throwboxes in DTN (Zhao et al., 2006), have

proposed ways to enhance network capacity in mobile DTN. Throwboxes are

inexpensive wireless storage devices, which act as intermediate nodes between

source and destination in wireless networks.

DTN was designed to enable communications between mobile devices and

allows long communication delay. Such situations are expected after large

disaster when network infrastructure has been damaged and communication is

disabled or other devices do not exist within communication range, DTN network

can still transmit location data once the communication retained.

2.3 Sharing Location Information

In the present case, we apply HYMAD for creating network, which uses both

MANET and DTN. Firstly, each mobile device is grouped with other devices

available in neighborhood, to establish mobile Ad-hoc network connection.

Secondly, DTN network would be propagated to multiple groups and flooding

routing protocol used to transmit data to all devices. Although flooding routing

can transmit information fast, it may result to network overhead and packet loss

and decrease communication quality. This issue can be solved by a defined limit

6 http://tier.cs.berkeley.edu/drupal/

 11

for number of times of transmission using Time-To-Live (TTL) 7 . TTL is a

mechanism that limits the lifespan of the transmitted data in network. TTL

provides information to the network router on whether the transmitted data has

resided in the network for long time and should be discarded. TTL controls how

many times the information should be transmitted from one device to the others.

The workflow of the algorithm, used to transmit data is described below:

a) Each mobile device transmits GPS track information to all devices within the

communication range.

b) Screening of device is carried out each time it enters into the communication

range and checked whether device has already received data from other

devices or not by using device ID.

c) If data has already received from a particular device ID, time of data receipt

would be checked before considering the GPS track information. Therefore,

the same device transmits GPS track information from different places, which

will be considered as a new data.

2.4 Field Experiment

In this section, the performance of near real-time mapping that proposed in

this thesis has been evaluated. Study demonstrates the experiment result using

mobile device (Nexus7). Several field evaluations have been performed in order to

demonstrate the effectiveness of the proposed method.

7 https://docs.datastax.com/en/cql/3.3/cql/cql_using/useExpire.html

 12

2.4.1 Environment for Field Experiment

Field experiment was carried with four mobile devices. Mobile devices are

connected via an Ad-hoc network using Wi-Fi function without using Internet

connection. To evaluate radio wave environment effect, experiment is carried out

at two study areas. The first one is residential area Sugimoto-cho area in Osaka

City and the second one is downtown Umeda area in Osaka City, Japan.

Prior to the experiment, confirmation about presence of wireless signals has

been carried out. Field investigation using mobile device has been confirmed that

there are few Wi-Fi access point in Sugimoto-cho area and interference from

wireless networks is limited. On the other hand, many Wi-Fi access points exist in

Umeda area．In terms of wireless signal interference it has been observed that,

Sugimoto-cho is generally similar to the areas of recent disaster events.

2.4.2 Methods for Field Experiment

In the field experiment, each mobile device is assigned with a fixed IP address.

Four mobile devices have been used for field experiment and each mobile device

receives 15 GPX files from other neighborhood devices. Further, data transfer rate

and transfer time are recorder for each mobile device. GPX files used in

experiment are real data logs that are recorded by mobile device for 15 minutes.

Location data size is about 13KB, on an average, after removing invalid GPX data.

Stable communication range is fixed as 30m.

 13

The complete process of sending data to form a particular device to all other

devices is defined as a cycle. Field experiments are carried out for three cycles.

Characteristics of parameters of field experiment are shown in Table 2.1.

2.4.3 Results of Field Experiment

In Sugimoto-cho area, the average time of sending one GPX file from one

device is calculated as 547.38ms (communication time) at 100% communication

rate. In this case, the communication rate is the percentages of amount of

successfully transmitted GPX files. In case of Umeda area communication time

was 726.19ms and the communication rate was 97.96%. Based on the result, good

wireless signal condition area like Sugimoto-cho, communication rate is assured

and can be exchange data in short time. Also in downtown area like Umeda,

where there are many smart phone users and access points, the experiment shows

communication rate of 97.96%.

In light of the above, it suggested that the proposed method is suitable to area

like Sugimoto-cho that is similar with disaster areas in-terms of availability of

wireless access points.

2.5 Simulation Experiment

Only field experiment is not enough to predict the efficacy of the system

because difficulty in carrying out field experiment with large number of devices.

Therefore, in addition to field experiment a simulation experiment is carried out

to evaluate the network performance. In this simulation the degree of perfection

 14

of map and the number of mobile devices and time taken to create map are

considered. The output file of the simulation is packet arrival factor, and

transmission time of location data. DTN network has been used to transmit the

data in the simulation experiment.

In case of connection between sender and receiver devices has interrupted,

relay device stores the data and resume transmission when connection with

receiving device is re-established.

2.5.1 Environment for Simulation Experiment

The simulation experiments were carried out of Asahi Ward, Osaka City

(Figure 2.2) as a target area. The base map used to assist simulation experiments

indicating available route in Asahi Ward, Osaka City was obtained from

Geographical Survey Institute (GSI)8, Japan. Where roads are denoted by black

color, building or houses are denoted as grey colour. River, pond and water place

are denoted as blue color. Park and place with vegetation are denoted as green

color. The simulation program is configured such that the mobile devices move

only on the road that can be traversed and road map that can be used for transmit

are created.

Details of the parameters used in simulation experiment are shown in Table

2.2. Simulation experiment carried out is explained below in detail．

a) Number of mobile devices

8 http://www.gsi.go.jp/tizu-kutyu.html

 15

The number of stranded commuters in Tokyo during the Great East Japan

Earthquake was reported as 5,150,000 persons, while the total population in

Tokyo is 37,000,000 persons9. Total population in the simulation target area

(14km2) is estimated to be about 202,600 persons according to the population data

of Asahi Ward, Osaka City10. Therefore the stranded commuters in experiment

area can be estimated to be about 28,000 persons using the same ratio in the case

of Tokyo. Assuming 10% of them has mobile device and use the proposed system

for GPS data sharing. The number of mobile devices is assumed between 2000 and

3000. A simulation run with the number of devices is 2000, 2200, 2400, 2600, 2800,

and 3000.

b) Setting of moving speed

Moving speed of people is set to 1.2m/s according to human’s average moving

speed. Daytime population in Asahi Ward, Osaka City consists of 22% of floating

population and 78% of residential population11. In case of floating population, we

assume their home is outside of experiment area, and model movement towards

their home direction until they reach outside limit of experiment area. In case of

residential population we assume that their home is inside experiment area, and

follows random waypoint (Matsuzaki et al., 2013). Random waypoint is a model to

select destination randomly, and move toward them. In order to have fair estimate

9 http://www.metro.tokyo.jp/INET/KEIKAKU/2012/11/DATA/70mbd101.pdf

10 http://www.city.osaka.lg.jp/contents/wdu020/asahi/english/gaiyo/index.html

11 http://www.city.osaka.lg.jp/contents/wdu020/english/

 16

of destination selection, each residential population is assigned to random

destination initially and the system intended to show user the shortest way to

their home. Note that, normally random way point model may have dead-ends by

limiting movable area by obstacles such as wall. So in this simulation, solve this

issue by moving along with obstacles when it cannot cross the obstacles.

c) Communication range

In this study, a Two-ray Ground Reflection Model is assumed. Communication

range is set to 30meters based on real measurement. Communication protocol

between devices is IEEE802.11n.

d) Limiting the number of times of data transmission

In this study, limit the transmitting rate using TTL to reduce network load.

TTL is set to 50．As long as TTL is not 0, device will transmit to proximal devices.

2.5.2 Methodology of Simulation Experiment

The experiment is carried out to evaluate system performance by simulated

movement of stranded commuters. Using modelled result, GPS trace logs of device

movement on map are recorded, and network simulator is run for evaluating

communication status. Network Simulator Version 2, widely known as NS-212, is

simply an event-driven simulation tool that has proved useful in studying the

dynamic nature of communication networks. Simulation of wired as well as

wireless network functions and protocols can be done using NS-2.

12 http://www.isi.edu/nsnam/ns/

 17

Using this data, each road link is numbered by road-width-priority search.

Road link is considered as a line between one intersection and the next. The

application evaluates the status of the road whether the road is able to travel or

not by a mobile device that traversed the road initially. Meaning that the road is

usable for transportation if one mobile device has already went through the

particular road. Any two devices close in communication range, share information,

merge GPS track data, and update the map. Comp, denoting the completion of

map is calculated as shown below:

𝐶𝑜𝑚𝑝 = min (
𝐸𝑑𝑔𝑒𝑁𝑢𝑚𝑛𝑜𝑑𝑒𝑖

𝐸𝑑𝑔𝑒𝑁𝑢𝑚𝑡𝑜𝑡𝑎𝑙
) × 100 （1）

Here, EdgeNumnodei is total number of road tracks that each mobile device

acquires. EdgeNumtotal shows the number of all road tracks on map. Completion

rate of map is the minimum value of road tracks in device divided by all road links

in map area. Equation for computing packet reception rate Packetrate of network is

shown below:

𝑃𝑎𝑐𝑘𝑒𝑡𝑟𝑎𝑡𝑒 =
𝑃𝑎𝑐𝑘𝑒𝑡𝑟𝑒𝑐𝑒

𝑃𝑎𝑐𝑘𝑒𝑡𝑠𝑒𝑛𝑑
 × 100 (2)

Where Packetrece is total amount of received packet and Packetsend is total

packet sent．Even within same communication range (30m), packet reception

 18

rate will decrease by increasing the number of devices. This is because increasing

the number of devices increases the potential to high network load and bandwidth

limitation. Simulation experiments using NS-2 configuration files and codes can

see in Appendix A.

2.5.3 Results of Simulation Experiment

Figure 2.3 shows the result of simulation experiment of Asahi Ward, Osaka

City after 3600 seconds. Red line in figure shows moving path. Each mobile device

starts with no map and the time to complete of map and communication status is

evaluated.

Figure 2.4 shows graph of completion of mapping related with time for 2000,

2200, 2400, 2600, 2800 and 3000 when mobile devices are used for simulation.

The result is calculated by averaging 10 results at each case. In order to evaluate

minimum number of devices, the simulation run with device number of 100, 400,

700, and 1000. Based on the experimental result for 2000, 2200 and 2400 devices

take 50 minutes to reach 100% map completion rate. A number of 2600, 2800 and

3000 devices need 40 minutes to reach 100% completion rate and each mobile

device could share completed maps. Focus on the number of mobile devices, 1000

devices needs 60 minutes, and 3000 devices need 40 minutes to accomplish 100%

completion rate. Therefore, the usage of more devices is potential to reduce the

completion time significantly and improve the quality of the map in a given time

duration.

 19

Further, evaluation of data transfer time has been carried in terms of number

of devices used for simulation experiment. In Figure 2.5, X-axis shows the number

of devices (nodes) and Y-axis denotes the data transfer time. According to

experiment result, it is noted that while number of devices are increased data

transmission time is decreased. It is observed that increased data transfer time

was required in case of experiments that carried out with relatively less number

of devices. In case of less number of devices, more time is required to reach the

communication range due to the increased distance between the proximal devices.

Meanwhile in the case of relatively higher number of devices being used, less data

transfer time is need due to shorter distance between the adjacent devices.

In addition to the previous evaluation performance, average road density is

calculated in order to estimate the reasonable number of devices is required to

complete the map with in particular time. Average road density (total road length

in 1 km2) is 28.7km/km2, according to data from GSI, Japan13. Simulation result

shows, study area at Asahi Ward, Osaka City (14km2), 2000 mobile devices can

reach 100% completion rate within 50 minutes

Packet reception rate within communication range of 30m is shown in Figure

2.6. In case of Sumiyoshi Ward (9.4km2) that has a road density of 27.1km/km2, it

is estimated that 1400 mobile devices can make 100% completion map within 50

minutes. In case of Tokyo Shibuya Ward (15.1km2), average road density is higher

13 http://nlftp.mlit.go.jp/ksj-e/gml/datalist/KsjTmplt-N04.html

 20

(30.9km/km2), 2400 devices will be needed to complete 100% map within 50

minutes.

Two field experiments were carried out at Osaka City and Suita City to

evaluate the performance of the system. The detailed explanation for the field

experiments has given in the following data processing for road traversability

map Chapter 3.

 21

Chapter 3

Data Processing for Road Traversability Map

3.1 Introduction

Chapter 2 focused on acquiring GPS location data, MANET and DTN to

implement post-disaster road traversability mapping system. The field

experiment and the simulation experiment were also demonstrated. Results show

that there is some issues exist with GPS location and navigation system, such as

insufficient positional accuracy. Therefore, this Chapter discusses about the

improvements made to address these issues.

This Chapter describes methodology and data processing workflow for sharing

GPS tracks data and filtering method use to remove low accuracy GPS data.

Location information is filtered using HDOP parameter of NMEA format in order

to overcome accuracy problems. Further, GPS track data is uploaded to the server

and data generalization using Douglas-Peucker algorithm was carried out to

reduce the amount of location data and speed up processing. The system match

the stranded commuter's GPS track data to the nearest street node and users are

able to find the traversability path to reach their destination using post-disaster

road traversability map. The post-disaster road traversability mapping created

does not include the data like road intersection, buildings, etc. OpenStreetMap

(OSM) offline map has been used as background map to enhance the utility for

navigation.

 22

Further, the performance of post-disaster road traversability mapping that

originally proposed by this research has been evaluated. Study demonstrates the

experiment result using mobile device (Nexus7). Field experiments were carried

out at Sumiyoshi-ward, Osaka City and Yamate-cho, Suita City, Japan to evaluate

the performance of map-matching algorithm.

3.2 Acquiring and Sharing Location Data using Android application

In this study, an Android14 application was implemented to acquire and share

location data between mobile devices. The user-friendly Android application for

mobile device is developed in Java language15 using Java Development Kit

(JDK)16, Java Software Development Kit (SDK)17.

Collected GPS tracks are filtered using parameters such as satellite numbers,

GPS accuracy and HDOP parameters. The horizontal positioning can be

determined with minimum of three satellites available. In practice, a minimum of

four satellites is needed to determine altitude value. Therefore, we filter GPS data,

acquired more than four satellites using the function gpsStatus.getSatellites()18.

14 https://www.android.com

15 https://www.java.com/

16 http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html

17 https://developer.android.com/studio/index.html

18 https://developer.android.com/reference/android/location/GpsStatus.html#getMaxSatellite

s%28%29

 23

Secondly, is selected according to the size of the road in the study area. In this

study, 24m19 is assigned as the maximum road size, defined in Japan's Road

Traffic Act. The GPS accuracy of the location data is estimated by using Android

function called location.getAccuracy()20. Finally, HDOP represents the accuracy of

GPS in horizontal space and time. HDOP is a key factor in determining the

relative accuracy of a horizontal position. The position with a lower HDOP value

means a potentially high positioning accuracy, although the reliability should be

cross checked with ground truth data. Therefore, one can expect a low position

accuracy if the HDOP value is higher. However, HDOP can be effectively used to

remove deviant position points from the GPS location information using

NmeaGpgga function. Figure 3.1(a) shows the filtered GPS data interface on

single mobile device using satellite numbers, GPS accuracy and HDOP

parameters. Figure 3.1(b) shows NMEA data stored on a device.

Further, filtered location data are saved as customized file format. The format

of the saved location data is shows as below:

$-- ID| yyyy-mm-dd| hhmmss| Device model| HDOP| Accuracy| Satellite

numbers| Latitude| Longitude

Table 3.1 shows an example of saved location data.

As explained in Section 2.3, the Android application shares location data

between nearby devices that are connected through MANET. The mobile devices

19 http://www.japaneselawtranslation.go.jp/law/detail_main?re=&vm=&id=2724

20 http://developer.android.com/reference/android/location/Location.html#getAccuracy()

 24

automatically recognize and connect to each other when they are within

communication range. Not only the Android application shares data between

closely surrounding devices but also data transfer to other devices using MANET

through surrounding devices. More devices in the MANET, the greater will be the

communication range. Figure 3.1(c) shows status of network connection.

Finally, the system allows the Android application to upload the collected

location data to server using relative path. A PHP script is executed on the server

to receive location data and transfer the location data to PostgreSQL21/PostGIS22

database. Figure 3.1(d) shows the interface to upload the location data to server.

Acquiring and sharing location data using Android application configuration files

and codes show in Appendix B.

The next section discusses in detail the post-processing carried out in the

server such as line generalization and map-matching. Freely available OSM data

has used as reference map for map-matching.

3.3 OpenStreetMap Data

OSM is an open project to create a free editable map of the world. OSM's data

is free to use by anyone, for any purpose. OSM is also a good data source to use for

map-matching, as it is freely available and has no technical restrictions in terms

21 https://www.postgresql.org

22 http://www.postgis.net

 25

of processing the data. In this study, collected location data using mobile devices

overlay with road network data collected from OSM.

OSM data around Yamate-cho, Suita City and Sumiyoshi-ward, Osaka City，

Japan were downloaded from OSM web site23. OSM data used in QGIS24 is shown

in Figure 3.2. The Coordinate Reference System (CRS) used in the Android

application is Mercator projection (EPSG: 900913)25，therefore, the following

parameter is needed to add to PROJ4 Open Source cartographic projections

libraries in order to synchronize the CRS GPS data with OSM data (Yoshida,

2007).

<900913> +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0

+x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +wktext +no_defs <>

3.3.1 Import OSM Road Network Data into Database

OSM road network data was obtained in ESRI Shape file format26. PostGIS27

command (shape2pgsql)28 is used to upload into database. Feature types and road

23 http://download.geofabrik.de

24 http://www.qgis.com

25 http://crschmidt.net/blog/archives/243/google-projection-900913/

26 http://www.digitalpreservation.gov/formats/fdd/fdd000280.shtml

27 http://www.postgis.net

28 http://www.bostongis.com/pgsql2shp_shp2pgsql_quickguide.bqg

 26

classes were automatically stored in the spatial database. Table 3.2 shows basic

road network attribute data used for post-disaster road traversability mapping.

GID is a code assigned to the road and OSM_id is used to identify the road

segment. The_geom is the geometry type of the road. That means calculations on

geometries (areas, distances, lengths, intersections, etc.) can be done using

Cartesian mathematics and straight-line vectors29. Figure 3.3 shows OSM road

network data.

The up-to-date global OSM road network data can be extracted from the OSM

database. Therefore, the framework for post-disaster road traversability mapping

suggested by this study can be applied not only in this study area but also in any

parts of the world.

In the next section, the implementation of line generalization using

Douglas-Peucker algorithm is discussed. This reduces the amount of GPS track

data to minimize system load and data communication overheads.

3.4 Line Generalization Using Douglas-Peucker Algorithm

Filtering location information data on mobile devices can reduce the number

of GPS track points. However, some queries extract a large volume of data and

need a bit of time to display the result, in addition, processing gets slow if the

extracted data is large. In order to reduce the amount of GPS track points, a line

generalization function was implemented using the Douglas-Peucker algorithm

29 http://postgis.net/docs/using_postgis_dbmanagement.html

 27

(Douglas and Peucker, 1973). The algorithm could produce the closest

approximating results possible by a human being manually simplifying a line. It

recursively splits the approximating poly-line at the vertex of furthest distance,

keeping those vertices under a given error bound or tolerance (Figure 3.4).

Song et al., (2010) and Yoshida et al., (2010) also adopted this algorithm to

produce generalized lines using accumulated GPS track logs. The application of

the Douglas-Peucker algorithm for line generalization is effective and efficient in

eliminating redundant points. Additionally, the algorithm also eliminates

extraneous position points and can speed up the performance at the next

processing stage.

The function simplifies points based on a given tolerance parameter, and it is

also effective for the points in which mobile device record the same location

information positions. This function not only achieves efficient data management,

but also reduces noise. Figure 3.5(a) displays filtered GPS track points, which

were shown as green circles. Figure 3.5(b) shows generalization results as green

line. The tolerance parameter was at 5m in Figure 3.5(b), after the generalization,

emphasizing how the number of points is successfully reduced. Finally the results

with OSM background map show in Figure 3.5(c), which closes resembles the actual

tracks collected.

This section introduced a line generalization using Douglas-Peucker

algorithm. The results are reliable and reduce the number of GPS points to be

used in map-matching algorithm.

 28

3.5 Map-matching Using Hausdorff Distance Algorithm

A common problem observed in traversability mapping is spatial

misalignment of GPS location information with road network data due to the low

GPS horizontal accuracy. In order to overcome this problem, map-matching is

carried out by using the Hausdorff distance algorithm. The Hausdorff distance

algorithm was originally developed to measure the similarity of two point sets and

is now widely used for curve matching. Unlike most shape comparison methods

that build a one-to-one correspondence between a GPS track and a road,

Hausdorff distance can be calculated without explicit point correspondence (Gao,

2005). The Hausdorff distance for map-matching is more tolerant to perturbations

in the locations of points than the other map-matching algorithm since it

measures proximity rather than exact superposition (Huttenlocher et al., 1993).

The Hausdorff distance algorithm based matching selects the roads that

match a vehicle trajectory and uses the length-weighed distance to calculate the

similarity between the GPS track and candidate roads. The roads with a short

distance measurement are selected for matching.

The given two finite point sets T = {t1, t2, ..., tm} (representing a GPS track in

the database) and R = {r1, r2, ..., rn} (representing a road from road networks), the

length-weighed Hausdorff distance from T to R, H (T, R), is calculated as follows;

𝐻(𝑇, 𝑅) = 𝑚𝑎𝑥(ℎ(𝑇𝑖, 𝑅𝑗
), ℎ(𝑅𝑗, 𝑇𝑖)) , 𝑖 = 1, 2, … , 𝑚 − 1 𝑗 = 1, 2, … , 𝑛 − 1

(1)

where

 29

ℎ(𝑇, 𝑅) = 𝑚𝑎𝑥
𝑡𝑖∈𝑇

 𝑚𝑖𝑛
𝑟𝑗∈𝑅

|| 𝑡𝑖 − 𝑟𝑗 || , 𝑖 = 1, 2, … , 𝑚 − 1 𝑗 = 1, 2, … , 𝑛 − 1

(2)

The || 𝑡𝑖 − 𝑟𝑗 || is the shortest distance from points of T and R. The function

ℎ (𝑇, 𝑅) is called the directed Hausdorff distance from T to R. It identifies the

point ti ∈ T that is the farthest from any point of R. It measures the distance from

ti to its nearest neighbor in R. The Hausdorff distance 𝐻(𝑇, 𝑅) is the maximum of

ℎ(𝑇𝑖, 𝑅𝑗
) and ℎ(𝑅𝑗, 𝑇𝑖

). Thus, it measures the degree of mismatch between two sets

by measuring the distance of the point of T that is farthest from any point of R

and vice versa. The steps involved in the map-matching process are as follows.

a) Selecting candidate roads from road networks: GPS tracking buffer roads are

generated by applying a threshold buffer size assigned as 24m, which is

almost half of the minimum distance between roads in study area. In order to

reduce the map-matching time, overlapping GPS track buffer roads are used

as candidate roads.

b) Finding the counterpart of the candidate road on the GPS track: By

computing the shortest distance from the candidate road to the GPS track,

the counterparts on the GPS track are found. A correspondence line is

determined accordingly for the GPS track segment being matched to the

candidate road.

c) Computing the length-weighed Hausdorff distance: Calculating the

length-weighed Hausdorff distances from the candidates to their counterpart

GPS track segments.

 30

d) Determining map-matched roads: Selecting the map-matched roads using a

distance less than a specific threshold. The threshold is determined by

considering the positioning accuracy and the road width form the field

experiment.

Map-matching using Hausdorff distance algorithm codes can see in Appendix

C.

3.6 Field Experiment

In this section, we evaluate performance of traversability mapping that

proposed in this research. Study demonstrates the experiment result using mobile

device (Nexus7). In order to demonstrate the effectiveness of the proposed

map-matching method, we performed field evaluation.

3.6.1 Environment of Field Experiment

In order to evaluate performance of the proposed post-disaster road

traversability mapping, two field experiments were carried out in Yamate-cho,

Suita City and Sumiyoshi-ward, Osaka City，Japan. Study area shown in Figure

3.6(a), geographically stretches from latitude 34°46'01"N to 34°46'57"N and

longitude 135°30'02"E to 135°31'23"E covers about 2km x 1.5km area. The second

study area shown in Figure 3.6(b), geographically stretches from latitude

34°35'06"N to 34°36'02"N and longitude 135°29'40"E - 135°31'01"E covers about

2km x 1.5km area.

 31

In this field experiment six mobile devices were used to collect GPS track

points from both study areas Figure 3.6(a) and Figure 3.6(b). Characteristics of

parameters used for field experiment are shown in Table 3.3. GPS tracks were

collected using mobile devices in field experiments are shown in Figure 3.7. More

than 20,000 position points with GPS tracks in each area were collected.

3.6.2 Results of Field Experiment

The GPS track data were collected using mobile devices and buffered in order

to overlay with road network data collected from OSM. The Figure 3.8

demonstrates the overlay map of buffered GPS tracks and road network for both

study areas Figure 3.6(a) and Figure 3.6(b). The GPS tracks were processed, and

the roads that overlap the buffer area of the GPS tracks are preliminarily selected

as candidates for matching. The results of matched segments and running time

are described in Table 3.4. In study area Figure 3.6(a), an average of 3,543 track

points was collected using six devices. Around 10% of low accuracy track points

were removed by filtering and an approximately 3,187 track points were finally

derived. Further, duration of average 1.491s was taken to run Hausdorff distance

map-matching algorithm for 3,187 GPS track points. Around 198 candidate

segments were overlapped with the area of GPS tracks. In study area Figure

3.6(b), an average of 3,340 track points was collected using six devices. From these,

around 14% of low accuracy track points were removed by filtering that an

average of 2,880 track points was derived. Further, an average of 1.279s was

taken as time to run Hausdorff distance map-matching algorithm for a number of

3,340 GPS track points. Around 176 candidate segments were overlapped the with

 32

GPS tracks of the area. Also the detailed result of filtering for each device is

shown in Table 3.4. In the field experiments it was found that using the Hausdorff

distance algorithm, more than 2,000 segments were map-matched with in 1s.

The length-weighed Hausdorff distances from candidate roads to the GPS

tracks were computed. Finally, the roads with a distance less than a specific

threshold value were chosen as matched roads. The result of road map-matching

depends on the selection of threshold value. The threshold value is an

experimental value related to the positional accuracy of GPS and the environment

of data collecting. In this research, it was set to 20m by comparing all the

map-matching results. Map-matching with 20m Hausdorff distance threshold

provides decent balance with real road network data. Map-matching with specific

threshold was used to determine if the GPS tracks collected by using mobile

devices had a adequate accuracy or not. Consequently, only GPS traces which lie

inside road network buffers were used to create the road traversability map.

The system evaluates the status of the road whether the road is usable for

travel or not by using GPS tracks collected by stranded commuters. A road is

considered usable for transportation, if one stranded commuter has already

travelled through a particular road. Finally, the Hausdorff distance of the roads

measured to be less than a specified threshold value, were chosen as

traversability roads. Traversability maps based map-matching for two areas are

shown in Figure 3.9. Different colors are used to indicate the traversability of the

road, which is determined by the pass frequency. Only two colors were used to

differentiate traversability of the roads due to limitation in the number of mobile

 33

devices used for filed experiments. The roads, which were traversed only once by

the commuters are shown in red color, and roads, which were traversed twice or

more are shown in green color in Figure 3.9.

In this Chapter we described methodology and data processing workflow for

managing GPS tracks data and map-matching method for post-disaster road

traversability mapping system. The next Chapter discusses demonstrate the

efficacy of post-disaster road traversability mapping system. Further, Chapter 4

considers the post-disaster road traversability map publishing services using

GeoServer30 WMS. In addition, GPS tracks sharing using Geopap-cloud31 web

service also discussed.

30 http://geoserver.org

31 https://github.com/geopaparazzi/geopaparazzi/wiki

 34

 Chapter 4

Map Services for Stranded Commuters

This Chapter describes the methodology of generating post-disaster

traversability map and making them available to standard commuters. In

addition, a cloud service has been deployed to publicly share the collected GPS

track for other purposes such as evaluating mobility behaviors.

4.1 Map Services for Stranded Commuters

The post-disaster traversability map is disseminated as WMS using

GeoServer. Therefore, the post-disaster traversability map can be instantaneously

viewed on device that connected to the Internet. Moreover, a digital signage

system powered by single Raspberry Pi mini computer is deployed to display the

post-disaster traversability map using available monitors to standard commuters

who do not carry a mobile device.

4.1.1 Publishing Post-Disaster Road Traversability Map using GeoServer WMS

This section, discusses ways for making post-disaster road traversability maps

available in the event of a natural disaster. Road traversability information may

change during and soon after disaster event. Therefore, the road traversability

map must be generated based on the real-time information obtained from the

field.

 35

In this study, WMS protocol was used to publish traversability map using

GeoServer, which is an open source server for managing and sharing geospatial

data. OpenLayers32, a JavaScript library, is integrated into GeoServer, making

map rendering quick and easy. Deploying of maps using the WMS standard

enables interoperability with different software applications. GeoServer also

supports connection to PostgreSQL/PostGIS spatial database facilitating spatial

queries and routing.

As explained in Chapter 3, GPS tracks data have been collected and two field

experiments were carried out in and around Yamate-cho, Suita City and

Sumiyoshi-ward, Osaka City, Japan. The Web-application was created to facilitate

publishing the post-disaster road traversability map using data stored in

PostgreSQL/PostGIS database. Figure 4.1 shows GeoServer connect to

PostgreSQL/PostGIS database. The OpenLayers Javascript API was used to

construct Web-GIS functionalities in this application. Since the Web application is

executed on the server side users need not to have software installed on client

devices and the application can be used on Web browsers for mobile devices.

The post-disaster road traversability map was developed by considering

real-time road condition during and soon after disaster events with updated

information. GPS tracks data collected by Android devices were automatically

stored in the spatial database. Newly collected GPS tracks data are automatically

updated to the road network database and published as traversability road map.

32 http://openlayers.org

 36

Figure 4.2 shows the Web interface of publishing post-disaster road traversability

map using GeoServer. Different colors are used to represent different levels of

traversability. The roads, which passed only once by the standard commuter is

shown in red color, and roads, which passed twice or more are denoted in green

color.

4.1.2 Digital Signage Service for Stranded Commuters

This section describes how to publish post-disaster road traversability map

using the digital signage services. Since many people do not carry a mobile device

or devices may not be operable due to lack of electricity during the disaster.

Therefore, the created post-disaster road traversability map needs to be made

available to the standard commuters who do not carry the mobile device.

In this study, digital signage powered by low-cost single mini computer

(Raspberry Pi 2 Model B V1.133, Figure 4.3) is be used to display the created

post-disaster road travesability map through available monitors that can be set

up at vantage points. The Raspberry Pi offers a suite of small single-board

computers developed by the Raspberry Pi Foundation. Raspberry Pi has low

power requirement, can be run on solar energy or running on a battery power

source. The signage display is managed using Concerto 34 , to easily engage

standard commuters through display monitors that maybe available or set-up at

vantage points. Concerto is a web-based digital signage application available

33 https://www.raspberrypi.org

34 http://www.concerto-signage.org

 37

under the Open Source 35 License. It uses of screens to broadcast specific

messages about events, services, and other noteworthy items. Figure 4.4 shows

sharing GeoServer WMS using Concerto digital signage.

The signage system connects to GeoServer to access the created post-disaster

road traversability map automatically and display them on available monitors.

Since the digital signage services are controlled remotely and the results

displayed on the monitors, users does no require a mobile device to access the

information. Figure 4.5 shows the interface of publishing post-disaster road

traversability map using Concerto digital signage system.

4.2 Sharing Recorded GPS Tracks using Geopap-cloud Web Service

This section describes sharing recorded GPS tracks using Geopap-cloud

service for managing GPS tracks data and sharing them to people in need.

Geopaparazzi 36 is a tool developed to do fast qualitative technical and

scientific surveys. Even if the main aim is for field survey, it contains tools that

can be of use for a variety of purposes. In this study，a method has been used to

share recorded GPS tracks which using Geopap-cloud37 tool of Geopaparazzi.

Mobile device users can connect to Geopap-cloud server during only set server

URL in preferences. To server URL the relative path upload is attached and sent

35 http://httpd.apache.org

36 http://www.geopaparazzi.eu

37 https://github.com/geopaparazzi/geopaparazzi/wiki

 38

to that URL via http POST. Mobile device users would be able to export a project

to the configured server. There have a main page listing the uploaded projects.

The sharing recorded GPS tracks using Geopap-Cloud service show in Figure 4.6

Figure 4.7 shows the characteristics of GPS tracks data displayed in the

Geopap-Cloud service. The summary of the data can be viewed using the project

view. It is also possible to see the profiles of the traces and download the points

and lines as shape files.

4.3 Deploying Routing using Road Traversability Map

This section, discusses the implementation of dynamic routing using created

road traversability map, which may be required by stranded commuters during

and soon after disasters.

Acquired GPS tracks already stored in the server as PostGIS database. In this

study, open source software pgRouting38 is used to carry out the routing service

using post-processed GPS tracks. The pgRouting can compute a route where the

cost can be either distance or time duration. Hence, the routing service can be

effectively used to find the optimal route for commuters.

This study uses Dijkstra's algorithm39 readily available in pgRouting (Kastl

and Junod, 2011) to calculate the shortest route. Figure 4.8(a) demonstrates an

38 http://pgrouting.org

39 http://www.geeksforgeeks.org/greedy-algorithms-set-6-dijkstras-shortest-path-algorithm/

 39

example of shortest path result as map from source point to target point using the

pgRouting function.

Firstly, length and topology for all the road segments were calculated using

functions ST_Length()40 and pgr_createTopology()41. Secondly, SQL command

used to calculate the route by using the road length as cost. In this study, stranded

commuters can update the location information during disaster into database

using Android application. As explained in Chapter 3, the traversability road

condition can be created using map-matching. The roads traversed by stranded

commuters are assigned lower cost in database using SQL command. Based on an

updated traversability condition, pgRouting algorithm can provide dynamic result

using changed road cost and send to stranded commuters. Figure 4.8(b) shows

demonstrate and example of traversability path result as map from source point

to target point using the pgRouting inside the traversability road map area.

Actually, not in all of the cases, the source point may inside the traversability

road map area. For example, as demonstrated in shortest path result (Figure

4.9(a)), the source point is outside the traversability road map area. In that case,

the shortest path from source point to traversability road is calculated and using

traversability road to target point. Figure 4.9(b) demonstrates a traversability

path result as map where source point outside the traversability road map area.

40 https://postgis.net/docs/ST_Length.html

41 http://docs.pgrouting.org/2.2/en/src/topology/doc/pgr_createTopology.html

 40

4.4 Publishing Offline Road Traversability Map using Tile Map

As mentioned in previous section, the road traversability map has been

created and publishing using GeoServer WMS. Further, acquired GPS tracks

stored in the server as PostGIS database can be effectively used to provide a

routing service using pgRouting. Access to GeoServer and PostGIS database

require Internet connectivity. This section, discusses a method to publish offline

road traversability map using Web Map Tiling Service (WMTS)42.

One of the objectives of this study is to support stranded commuters during

and soon after disaster events even when Internet connection is unavailable.

Therefore, WMTS was used to share the post-disaster traversability map even

when Internet is unavailable. Offline map allows stranded commuters to view

created road traversability map when they are disconnected from the Internet.

Once they are reconnected, they can get map updates from WMTS provided by

GeoServer.

In this study, GeoServer support for generating tiles map is used. To make tile

map as fast and responsive as possible, traversability road map has been set

several zoom levels to generate map tiles. Tiled traversability road map takes the

form of a pyramid where the map is drawn at a progressive series of zoom levels,

with the smallest zoom level using fewer tiles. Figure 4.10 shows a sample of tile

map sets. These tiles can be served with the WMTS and stranded commuters can

directly manipulate to pan and zoom.

42 http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification

 41

Tiled maps can reasonably work for serving traversability road map to

Android devices user. Stranded commuters are able to find the traversability path

to reach their destination using offline tile map. Figure 4.11 shows tiles based on

traversability road map.

However, stranded commuters cannot share tile maps to the other people who

have not installed appropriate Android application. The solution of this problem

will be discusses in next section.

4.5 Offline Tile Map Sharing using MANET

Previous section focused on publishing offline road traversability map using

WMTS. This section describes how to share created offline tile map using

MANET.

As discussed in Chapter 2, GPS location data sharing has been performed

using MANET. Even when Internet connection is unavailable, the proposed

system can get data from nearby devices connected through Ad-hoc network.

Therefore, offline tile map created also can be shared through Ad-hoc network.

Any mobile devices connect the Ad-hoc network, if at least one device receive the

post-disaster road traversability map either physically or through Internet, it can

transmit offline tile map to all mobile devices.

Many applications for Android, iOS, and other mobile devices can use offline

tile map data to display a maps offline. For example, offline tile map based on

traversability road map can be displayed using Geopaparazzi application. Offline

 42

tile map to be used in Geopaparazzi can be created in several ways43. In this study,

stranded commuters only need export shared mapurls44 and mbtiles45 files to the

device map folder. The tiled traversability road map will be automatically load

and display on mobile device. Figure 4.12 shows the tiled traversability road map

is displayed in Geopaparazzi.

Further, the study recommends another method to share the post-disaster

road traversability map using SQLite database46. SQLite database is an open

source SQL database that stores data to a text file on mobile device. Through

created MANET, SQLite database file can be transmit to all mobile devices.

Therefore, server can export PostGIS database data to SQLite database file using

ogr2ogr47.

43 https://github.com/geopaparazzi/geopaparazzi/wiki/

44 https://github.com/geopaparazzi/geopaparazzi/wiki/.mapurl-parameters

45 http://wiki.openstreetmap.org/wiki/MBTiles

46 https://www.sqlite.org

47 http://www.gdal.org/ogr2ogr.html

 43

Chapter 5

Summary and Discussions

The main motivation in undertaking this research was to address some of the

practical issues that were widely reported during major disaster situations such

as the 11 March, 2011 Tohoku earthquake in Japan. Apart to great loss of life and

property in the near vicinity of the earthquake and the subsequent tsunami event,

metropolitan areas such as Tokyo experienced disruption of train services,

electrical outages and inaccessibility to Internet services. As a result a vast

number of commuters were stranded and compelled to proceed to their

destinations using unfamiliar routes and transportation modes. Supporting

stranded commuters during and soon after earthquake disasters or other

emergency situations have been considered as one of the most important issues

for ensuring safety of citizens. It is, therefore, necessary to develop a near

real-time traversability mapping service that can be available during or soon after

the disaster.

The post-disaster road traversability mapping system developed as a part of

this research facilitates an effective and timely response for emergency scenarios.

The offers a significant improvement compared to existing online map services

such that may be rendered unusable during and soon after disasters. Supporting

stranded commuters during and soon after earthquake disasters have been

considered as one of the most important issues in ensuring safety.

 44

Although several previous studies were focused on navigation by GPS locations

and location based services for disaster evacuation (Magnusson, 2012; Fujihara et al.,

2013), most of them using map data that have been collected in the past and

require Internet services.

In this research, a workflow for road traversability mapping service was

implemented and evaluated for viability and performance. The traversability

mapping services are basically designed to perform GPS data collection and

sharing between nearby devices even when Internet connectivity is unavailable.

MANET and DTN were investigated using a mobile application for sharing GPS

tracks. The application was tested using 6 Android devices in urban and

semi-urban areas in Osaka to evaluate feasibility and performance. In order to

evaluate scenario with large number of devices, a simulation experiment using the

NS-2 simulator was carried out. The field experiment and simulation experiment

elucidates the efficacy of GPS data sharing and aggregation using a combination of

MANET and DTN. The simulation experiment also demonstrates that in densely

populated areas, around 2000 devices could provide complete coverage of entire

road network in 60 minutes.

In the next step, pre-processing of GPS tracks collected by individual devices

was considered to minimize volume of data transfer considering limited

bandwidth available in Ad-hoc networks. An Android application for filtering GPS

tracks, sharing between mobile devices and aggregation of data was developed.

GPS filtering is implemented based on standard parameters such as number of

GPS satellites used for positioning, GPS accuracy and HDOP in order to eliminate

 45

low accuracy GPS data. The application also allows for uploading the aggregated

data to the server for further processing when the Internet connection is available.

A post-processing workflow was implemented for generating updated road

traversability map using the aggregated GPS tracks. The post-processing consists

of a line simplification based on Douglas-Peucker algorithm and map-matching

with existing road network using the Hausdorff distance algorithm. Line

simplification was applied reduce the data and map-matching to remove outliers

and generate a navigable traversability road network. Performance of

map-matching algorithm was evaluated with data collected in two field campaigns

in Yamate-cho, Suita City and Sumiyoshi-ward in Osaka City, Japan. Line

simplification and map-matching algorithm was found to give desired results to

achieve the final objective.

As a final step, as and when new GPS tracks are loaded to the server, the

traversability maps are automatically updated by running the post-processing

program in the server. The updated road i maps are published as WMS using

GeoServer and available as a raster layer to any device connected to Internet. The

traversability road network is stored in a PostgreSQL/PostGIS spatial database

and routing functionality is implemented using the pgRouting library to facilitate

in guiding users from their present location to target destination.

Map tiles are also generated automatically to support offline use. The road

traversability map tiles can be either downloaded when Internet connectivity is

available or the tiles can be shared among devices connected though the Ad-Hoc

 46

network. As a future work, it is planned to incorporate off-line routing

functionality using an embedded database. Lastly, cater to users who may not

have access to smart phone, a Raspberry Pi based digital signage system is

deployed to facilitate display the traversability map for public viewing.

The framework was originally designed to be use during and soon after

disaster. Since the system can be used in an offline as well as online mode, it can

used to update the road map during other situations such as disaster drills. Such

use would greatly help in disaster preparedness and mitigate loss of life and

property in future disasters.

 47

Chapter 6

Conclusions and Future Work

As discussed in Chapter 5, stranded commuters require post-disaster road

traversability mapping system. Post-disaster traversability mapping in a near

real-time scale is always been a challenging task especially due to the

non-availability of Internet connection. Potential obstacles that can be occurring

during disaster events include fire outbreaks, unexpected stoppages in public

transportation, road damage, traffic signal damage and Internet disconnection.

Hence, the traversability mapping system needs to consider these issues. The

traversability mapping system developed as a part of the present research, is

effective in addressing several of these issues and provides a workflow for

generation a near real-time road traversability map even when no Internet

connection is available.

The data processing workflow implemented as a part of this research helps

overcome several of the limitations of previous research. Some salient feature that

distinguish this research from previous works are below:

a) Usability by stranded commuters using public transportation rather than

private automobile. This is an important factor especially in urban areas in

Japan where public transportation is more widely used than private

automobile. Although a large automobile maker demonstrated the use of near

 48

real-time Floating Cellular Data to provide usable routes and shared them

with drivers. It is difficult for stranded passengers using public

transportation to utilize information provided for automobile users. This

thesis described the workflow of post-disaster road traversability mapping

system that can be used supporting stranded commuters during and soon

after disasters in urban areas. The system is made available to mainly

support standard commuters carrying mobile device.

b) Most of the functionality is availability both in online as well as offline mode

and the system is usable even when Internet connectivity is unavailable. In

this study, acquired GPS location data from several devices were assimilated

to create a post-disaster road traversability map. Even when Internet

connection is unavailable, the proposed system can get GPS location data

from nearby devices connected through created Ad-hoc networks. After

post-processing, map tiles are also generated automatically to support offline

use. The road traversability map tiles can be either downloaded when

Internet connectivity is available or the tiles can be share among devices

connected though Ad-hoc networks.

c) The entire workflow is implemented using Open Source software and

libraries and, therefore more amenable for future enhancements and

customization. Here, the post-disaster road traversability map generated is

made available to mobile devices as well as digital signage. The source codes

developed post-disaster road traversability mapping will be uploaded to

 49

GitHub48 repository. Therefore, the source code can be access by one who

wishes to carry out further improvement in the developed system.

Based on the features described above, it can be concluded that the proposed

framework and data processing workflow are effective in accomplishing the

objectives envisaged for the current research.

As a future work, it is necessary to consider ways and means to incorporate

additional contextual information to the traversability maps to make them more

intuitive. Another challenge would be to enhance the system functionality by

considering realistic situations affecting crowd dynamics and behavioural

patterns as regards mobility.

Additional field experiments or simulation with large number of field devices

need to be undertaken to evaluate scalability and robustness of the proposed

system. The present study focused on a small experiment area (5km2) and only

limited number of mobile devices used to evaluate the system. Moreover, further

work is required to evaluate effectiveness of the proposed system in situations

where civil infrastructure like bridges may have been rendered unusable.

Therefore, in the future investigations will need to focus on experiments including

scenarios of collapse of civic infrastructures and other disruptions that may occur

in real disaster situations.

48 https://github.com

 50

Lastly, it will also be useful to consider low-cost gateway49 accepting the

inbound data sent by field devices and outbound communication to a process

running in server and further enhance operability in offline mode.

49 https://thenewstack.io/tutorial-prototyping-a-sensor-node-and-iot-gateway-with-arduino-

and-raspberry-pi-part-1/

 51

References

Amirian, P. and Alesheikh, A. (2008). A Service Oriented Framework for Dissemination

Geospatial data to Mobile, Desktop and Web Clients. World Applied Sciences journal,

vol.3, no.1, pp.140-153.

Anagnostopoulos, C. and Hadjiefthymiades, S. (2012). Optimal, quality-aware scheduling of

data consumption in mobile ad hoc networks. Journal of Parallel and Distributed

Computing, vol.72, no.10, pp.1269-1279.

Capkun, S., Hamdi, M. and Hubaux, J. (2002). GPS-free positioning in mobile ad hoc

networks. Cluster Computing, vol.5, no.2, pp.157-167.

Chenji, H., Zhang, W., Stoleru, R. and Arnett, C. (2003). DistressNet: A disaster response

system providing constant availability cloud-like services. Ad Hoc Networks, vol.11, no.8,

pp.2440-2460.

Choosumrong, S., Raghavan, V. and Realini, E. (2010). Implementation of Dynamic Cost

Based Routing for Navigation Under Real Road Conditions Using FOSS4G and

OpenStreetMap. Proceedings of GIS-IDEAS 2010, No.5, pp.53-58.

Choosumrong, S., Raghavan, V. and Bozon, N. (2012). Multi-Criteria Emergency Route

Planning Based on Analytical Hierarchy Process and pgRouting. Geoinformatics, vol.23,

no.4, pp.159-168.

Choosumrong, S. (2014). Development of Algorithm for Multi-Criteria, Multi-Purpose

Kinetic Routing Service Using Free and Open Source Software. Osaka City University,

Department of Graduate School for Creative Cities, Ph.D Dissertation, 105p.

http://dlisv03.media.osaka-cu.ac.jp/il/meta_pub/G0000438repository_6036

 52

(Accessed: 2017/06/22)

Dockstader, S.L. and Tekalp, A.M. (2001). Multiple camera tracking of interacting and

occluded human motion. Proceedings of the IEEE, vol.89, no.10, pp.1441-1455.

Fujihara, A. and Miwa, H. (2013). Disaster evacuation guidance method using opportunistic

communication (in Japanese). IEICE, vol.96, no.6, pp.580-588.

Gao, Y. (2005). Fast Screening in Large Face Databases Using Merit-Based Dominant Points.

Multimedia Modelling Conference, MMM 2005. Proceedings of the 11th International,

pp.284-290.

George, S.M., Zhou, W., Chenji, H., Won, M., Lee, Y.O., Pazarloglou, A., Stoleru, R. and

Barooah, P. (2010). DistressNet: a wireless ad hoc and sensor network architecture for

situation management in disaster response. Communications Magazine, IEEE, vol.48,

no.3, pp.128-136.

Haerri, J., Fiore, M., Filali, F., Bonnet, C., Chiasserini, C. and Casetti, C. (2005). A realistic

mobility simulator for vehicular ad hoc networks. Eurecom Technical Report, pp.1-12.

Huttenlocher, D.P., Rucklidge, W.J. and Klanderman, G.A. (1993). Comparing images using

the Hausdorff distance under translation. IEEE Computer Society Conference.

Jain, S., Fall, K. and Patra, R. (2004). Routing in a delay tolerant network. SIGCOMM

Comput. Commun.Re, vol.34, no.4, pp.145-158.

Joshi, P. (2011). Security issues in routing protocols in MANETs at network layer. Procedia

Computer Science, vol.3, pp.954-960.

Kastl, D. and Junod, F. (2011). pgRouting Workshop Manual. http://workshop.pgrouting.org/

(Accessed: 2017/06/22)

 53

Kim, Y.P., Nakano, K., Miyakita, K., Sengoku, M. and Park, Y.J. (2012). A routing protocol

for considering the time variant mobility model in delay tolerant network. IEICE

Transactions on Information and Systems, vol.E95-D, no.2, pp.451-461.

Lorincz, K., Malan, D.J., Fulford-Jones, T.R., Nawoj, A., Clavel, A., Shnayder, V., Mainland,

G., Welsh, M. and Moulton, S. (2004). Sensor networks for emergency response:

challenges and opportunities. Pervasive Computing, IEEE, vol.3, no.4, pp.16-23.

Lwin, K. and Murayama, Y. (2011). Web-based GIS system for real-time field data collection

using a personal mobile phone. Journal of Geographic Information System, vol.3, no.4,

pp.382-389.

Magnusson, C., Rassmus-Grohn, K. and Szymczak, D. (2012). Navigation by pointing to GPS

locations. Personal and Ubiquitous Computing, vol.16, no.8, pp.959-971.

Mashhadi, A., Mokhtar, S. and Capra, L. Fair content dissemination in participatory DTNs.

Ad Hoc Networks, vol.10, no.8, pp.1633-1645.

Matsuzaki, R. and Ebara, H. (2013). Ad-hoc networks using smart homes in an Earthquake

disaster delivery of rescue request map data for buried victims. IPSJ, vol.6, no.1, pp.1-15.

Matsuzaki, R., Ebara, H. and Muranaka, N. (2015). Rescue support system with DTN for

earthquake disasters. IEICE Transactions on Communications, vol.E98-B, no.9,

pp.1832-1847.

Minamimoto, S., Fujii, S., Yamaguchi, H. and Higashino, T. (2010). Estimating disaster

situation using mobile nodes’ position and wireless link information (in Japanese). IPSJ,

vol.51, no.12, pp.2169-2183.

 54

Patel, S.N., Reynolds, M.S. and Abowd, G.D. (2008). Detecting human movement by

differential air pressure sensing in HVAC system ductwork: An exploration in

infrastructure mediated sensing. Pervasive Computing, Springer, vol.5013, pp.1-18.

Sammou, E.M. and Abdali, A. (2011). Routing in delay tolerant networks (DTN). Network

and System Sciences, vol.4, no.1, pp.53-58.

Schroedl, E., Wagstaff, K., Rogers, S., Langley, P. and Wilson, C. (2004). Mining GPS traces

for map refinement. Data Mining and Knowledge Discovery, vol.9, no.1, pp.59-87.

Seok-Kap, K., Hakjeon, B., Kyungran, K. and Chang-Soo, P. (2012). Quasi fair forwarding

strategy for delay tolerant networks. IEICE Transactions on Communications, vol.95,

no.11, pp.3585-3589.

Shah, S., Bashir, A., Chauhdary, S., Jiehui, C. and Park, M. (2009). Mobile ad hoc

computational grid for low constraint devices. Future Computer and Communication,

pp.416-420.

Shi, W. and Liu, Y. (2010). Real-time urban traffic monitoring with global positioning system

equipped vehicles. Intelligent Transport Systems, vol.4, no.2, pp.113-120.

Song, X., Raghavan, V. and Yoshida, D. (2010). Matching of vehicle GPS traces with urban

road networks. Current Science, vol.98, no.12, pp.1592-1598.

Song, X., Raghavan, V. and Yoshida, D. (2009). Open Web Processing Services for Improving

Accuracy of GPS tracks using Filtering and Map-Matching, Proceedings of International

Conference FOSS4G2009, http://download.osgeo.org/osgeo/foss4g/2009/

SPREP/1Wed/Parkside%20GO4/1100/wed%20g04%201100%20song.ppt

(Accessed: 2017/06/22)

 55

Spyropoulos, T., Psounis, K. and Raghavendra, C. (2008). Efficient routing in intermittently

connected mobile networks: the multiplecopy case. Networking, IEEE/ACM Transactions

on, vol.16, no.1, pp.77-90.

Sun, J., Zhu, X., Zhang, C. and Fang, Y. (2011). RescueMe: location-based secure and

dependable VANETs for disaster rescue. Selected Areas in Communications, vol.29, no.3,

pp.659-669.

Sun, W., Ishimaru, Y., Yasumoto, K. and Ito, M. (2010). Data routing for DTN environments

according to data size and deadline (in Japanese). IPSJ SIG, vol.2010, no.80, pp.1-6.

Tachiki, Y., Yoshimura, T., Hasegawa, H., Mita, T., Sakai, T. and Nakamura, F. (2005). Effects

of polyline simplification of dynamic GPS data under forest canopy on area and

perimeter estimations. J. Forest Res., vol.10, no.6, pp.419-427.

Tracy Camp, J.B. and Davies, V. (2002). A survey of mobility models for ad hoc network

research. Wireless Communications and Mobile Computing, vol.2, no.5, pp.483-502.

Weiser, A. and Zipf, A. (2007). Web Service Orchestration of OGC Web Services for Disaster

Management. Geomatics Solutions for Disaster Management, pp.239-254.

Whitbeck, J. and Conan, V. (2010). Hymad: Hybrid dtn-manet routing for dense and highly

dynamic wireless networks. Computer Communications, vol.33, no.13, pp.1483-1492.

Wilson, D.H. and Atkeson, C. (2005). Simultaneous tracking and activity recognition (STAR)

using many anonymous, binary sensors. Pervasive computing, Springer, vol.3468, pp.62–

79.

Wren, C.R. and Tapia, E.M. (2006). Toward scalable activity recognition for sensor networks.

Location and context-awareness, Springer, vol.3987, pp.168–185.

 56

Yamamoto, T. (2013). Development of Indoor Navigation System Using Visible Light

Communication and FOSS4G. Osaka City University, Department of Graduate School

for Creative Cities, Master Thesis, 49p.

Yoon, J., Liu, M. and Noble, B. (2006). A general framework to construct stationary mobility

models for the simulation of mobile networks. IEEE Transactions on Mobile Computing,

vol.5, no.7, pp.860-871.

Yoshida, D. (2007). Implementation of System for Sharing and Managing Spatial Data Using

Open Standards. Osaka City University, Department of Graduate School for Creative

Cities, Master Thesis, 97p.

Yoshida, D., Song, X. and Raghavan, V. (2010). Development of track log and point of

interest management system using free and open source software. Applied Geomatics,

vol.2, no.3, pp.123-135.

Yoshida, D. (2010). Development of Processing Services for G Enhancement by Data

Filtering and Kinematic Relative Positioning. Osaka City University, Department of

Graduate School for Creative Cities, Ph.D Dissertation, 100p.

http://dlisv03.media.osaka-cu.ac.jp/il/meta_pub/G0000438repository_111TD0000171

(Accessed: 2017/06/22)

Yu, W., Ebara, H., Matsuzaki, R. and Raghavan, V. (2013). Real-time mapping system using

GPS for stranded commuter. Mobile Computing and Ubiquitous Communications,

vol.2013, no.35, pp223-228.

Yu, W., Ebara, H., Matsuzaki, R., Raghavan, V. and Yoshida, D. (2014). A revisit of: real-time

mapping system using GPS for stranded commuters ~A simulation by network simulator

2~. Mobile Computing and Ubiquitous Communications vol.2014, no.40, pp131-118.

 57

Yu, W., Ebara, H., Matsuzaki, R., Raghavan, V. and Yoshida, D. (2014). Real-time support

system for stranded commuters considering traffic conditions. INFORMS 2014, San

Francisco, USA, November 2014.

Yu, W., Raghavan, V., Yoshida, D., Ebara, H. and Matsuzaki, R. (2014). GEOMANET: A Post

Disaster Location Information Service Using Mobile Ad-hoc Networks. FOSS4G-ASIA

2014, Bangkok, Thailand, December 2014.

Yu, W., Song, X., Raghavan, V., Yoshida, D. and Ebara, H. (2016). Post disaster road

traversability mapping using mobile user generated GPS traces and OpenStreetMap based

on map-matching. GEOINFORUM-2016, vol.27, no.2, pp.116-117.

Zhao, L., Ochieng, WY., Quddus, MA. and Noland, RB. (2002). An extended Kalman filter

algorithm for Integrating GPS and low-cost dead reckoning system data for vehicle

performance and emissions monitoring. J Navig, vol.56, no.2, pp.257-275.

 58

Figure 1.1: The framework of post-disaster road traversability mapping system

 59

Figure 1.2: Flowchart showing post-disaster road traversability workflow

 60

Figure 2.1: Assimilating map data from multiple users (after Yu et al., 2015)

Figure 2.2: Map of study area around the Asahi Ward, Osaka City (after Yu et al., 2015)

 61

 Figure 2.3: Simulated GPS tracks obtained for Asahi Ward, Osaka City

 (after Yu et al., 2015)

Figure 2.4: Completion of mapping related to time (2000nodes～3000nodes)

 (after Yu et al., 2015)

 62

Figure 2.5: GPS data transfer time (after Yu et al., 2015)

Figure 2.6: Packet reception rate (after Yu et al., 2015)

 63

 (a) (b)

(c) (d)

Figure 3.1: Screenshots of Android application shows data collection, filtering and sharing to

server. (a) Location data information (b) NMEA data store on a device (c) Automatic network

(d) Update location data to server construction

 64

Figure 3.2: OSM data around Sumiyoshi-ward, Osaka City displayed in QGIS

Figure 3.3: Road network superimposed over OSM in QGIS

 65

Figure 3.4: Line simplification steps in Douglas-Peucker algorithm

 (a) Before generalization (b) Result with background map

Figure 3.5: Results of Douglas-Peucker line simplification in Osaka City area

© OpenStreetMap contributors

 66

Figure 3.6: Study area (a) Yamate-cho, Suita City and (b) Sumiyoshi-ward, Osaka city in (c)

Osaka Fu

 67

Figure 3.7: GPS tracks collected using six mobile devices in (a) Yamate-cho, and (b)

Sumiyoshi-ward

 68

Figure 3.8: Road network and buffered GPS tracks before map-matching (a) Yamate-cho, and

(b) Sumiyoshi-ward

 69

Figure 3.9: Results of map matching (a) Yamate-cho, and (b) Sumiyoshi-ward based

map-matching

 70

Figure 4.1: GeoServer connecting to PostGIS database

Figure 4.2: Road traversability map displayed as WMS layer in GeoServer

 71

Figure 4.3: Illustration of Raspberry Pi based digital signage system

 72

Figure 4.4: Sharing GeoServer WMS layer using Concerto signage system

Figure 4.5: View of road traversability map in Concerto signage system

GeoServer WMS

 73

Figure 4.6: Sharing recorded GPS tracks using Geopap-Cloud

Figure 4.7: GPS tracks are displayed in Geopap-Cloud

 74

Figure 4.8: Shortest path using pgRouting between point A and B inside the traversability

road map area a) Normal situation b) Using traversability road map.

 75

Figure 4.9: Shortest path using pgRouting between point A and B outside the traversability

road map area a) Normal situation b) Using traversability road map

 76

Figure 4.10: Illustration of tile map.

Figure 4.11: Map tiles of traversability road map.

 77

Figure 4.12: Tiled traversability road map is displayed in Geopaparazzi

 78

Table 2.1: Parameters used for field experiments

Items Parameters

The number of devices 4

GPX file 13 KB

Communication range 30 m

The number of communications 15 × 3 (One device)

Experiment time 15 minutes

The number of cycles 3

Table 2.2: Parameters used for simulation experiments

Items Parameters

Simulation area 14 km2

The number of mobile devices 2000~3000

Moving speed 1.2 m/s

Simulation range 30 m

Communication interval 1 s

Experiment time 3600 s

The number of trials 10

TTL 50

 79

Table 3.1: Sample of acquired location data

ID Date Time Device model HDOP Accuracy
Satellites

numbers
Latitude Longitude

0 2016-07-11 14:21:13 Nexus7 1.2 8.0 6.0 34.594456 135.50232

1 2016-07-11 14:21:14 Nexus7 0.8 8.0 6.0 34.59445 135.50224

2 2016-07-11 14:21:15 Nexus7 0.8 8.0 7.0 34.59445 135.50224

3 2016-07-11 14:21:16 Nexus7 0.8 8.0 8.0 34.594448 135.50221

4 2016-07-11 14:21:17 Nexus7 0.8 8.0 8.0 34.594357 135.50203

5 2016-07-11 14:21:18 Nexus7 1.2 8.0 8.0 34.594357 135.50203

6 2016-07-11 14:21:19 Nexus7 0.8 8.0 8.0 34.594327 135.50203

7 2016-07-11 14:21:20 Nexus7 0.8 8.0 8.0 34.594322 135.50192

8 2016-07-11 14:21:21 Nexus7 0.8 8.0 8.0 34.594322 135.5019

9 2016-07-11 14:21:22 Nexus7 0.8 8.0 8.0 34.594322 135.50189

10 2016-07-11 14:21:23 Nexus7 0.8 8.0 8.0 34.594322 135.50188

11 2016-07-11 14:21:24 Nexus7 0.8 8.0 8.0 34.594322 135.50186

12 2016-07-11 14:21:25 Nexus7 0.6 6.0 8.0 34.594322 135.50185

13 2016-07-11 14:21:26 Nexus7 0.6 6.0 8.0 34.59432 135.50183

14 2016-07-11 14:21:27 Nexus7 0.8 8.0 8.0 34.59432 135.50183

15 2016-07-11 14:21:28 Nexus7 0.8 8.0 8.0 34.59432 135.5018

… … … … … … … … …

 80

Table 3.2: Road network attribute data used for road traversability mapping system

GID OSM_id The_geom

1 196468596 0102000000020000006B0DCA…

2 138932771 010200000004000000DD8993…

3 138949151 0102000000110000007C8F6B…

4 199316349 0102000000090000007C8F6B…

5 198028347 01020000000200000027AA4E…

6 117152095 0102000000020000008D95FF…

7 83417778 01020000000500000043CBF8…

… … …

Table 3.3: Parameters used for field experiments

Study area Yamate-cho, Suita City Sumiyoshi-ward, Osaka City

The model of devices Nexus7 Nexus7

The number of devices 6 6

Area covered 2 x 1.5 km 2 x 1.5 km

Experiment time 1 hour 1 hour

 81

3.4: Results of field experiments

 Yamate-cho, Suita City Sumiyoshi-ward, Osaka City

Device

number

Number of

points

Number of

filtered points

Number of matched

segments

Running

time (s)

Number of

points

Number of

filtered points

Number of matched

segments

Running

time (s)

Device1 3525 3363 238 1.125 4157 3208 180 2.273

Device2 3315 3179 197 0.983 3275 3057 153 0.868

Device3 3743 3620 248 1.332 2550 2335 156 0.989

Device4 3818 3099 161 2.743 4158 3975 219 1.703

Device5 3387 3008 201 1.135 2767 2419 188 0.634

Device6 3467 2857 144 1.628 3131 2288 157 1.212

 82

Appendix A

As mentioned in the Chapter 2 simulation experiments used NS-2 configuration files.

Two NS-2 configuration files were used in this study namely aodv.tcl and cbrgen.tcl. In order

to run the simulation experiment, parameters such as simulation area, number of devices to

be used for simulation, moving speed, simulation range, communication interval, experiment

time and number of trials should be mentioned in a separate file ("scene-n1000-m12-t1-

x4568-y2988"), which would consider for the simulation. In addition, another file should

named "cbr_n1000_m100_r1" is used to specify the network event settings.

 aodv.tcl : make communication between nodes using AODV routing protocol and CBR

traffic

 cbrgen.tcl : create connections between the nodes , one can specify the maximum

number of connections to be made for all the nodes in the network

Location data transfer time, pocket loss and reception rate parameter are derived as the

output of the simulation. Further, these parameters are supplied to awk files in order to

compute network load, communication frequency and network delay using functions such as

load.awk, frequency.awk and delay.awk respectively. Finally, function average.awk is used to

calculate the average of the results.

 load.awk : calculate the load of the network

 frequency.awk : calculate the frequency of the communication

 delay.awk : calculate the delay of the network

 average.awk : calculate the average of the results

 83

==

aodv.tcl

==

#=====================================

Define options

#=====================================

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model

set val(netif) Phy/WirelessPhy ;

set val(mac) Mac/802_11 ;

set val(ifq) Queue/DropTail/PriQueue ;

set val(ll) LL ;

set val(ant) Antenna/OmniAntenna ;

set val(ifqlen) 50;

set val(nn) 1000;

set val(rp) AODV;# routing protocol

set opt(cp) "cbr_n1000_m100_r1" ;

set opt(sc) "scene-n1000-m12-t1-x4568-y2988" ;

#=====================================

Main Program

#=====================================

set ns_ [new Simulator]

set tracefd [open aodv.tr w]

$ns_ trace-all $tracefd

$ns_ use-newtrace

set namtracefd [open aodv.nam w]

$ns_ namtrace-all-wireless $namtracefd 4568 2988

set topo [new Topography]

$topo load_flatgrid 4568 2988

set god_ [new God]

create-god $val(nn)

$ns_ node-config -adhocRouting $val(rp) ¥

 -llType $val(ll) ¥

 -macType $val(mac) ¥

 -ifqType $val(ifq) ¥

 84

 -ifqLen $val(ifqlen) ¥

 -antType $val(ant) ¥

 -propType $val(prop) ¥

 -phyType $val(netif) ¥

 -channelType $val(chan) ¥

 -topoInstance $topo ¥

 -agentTrace ON ¥

 -routerTrace ON ¥

 -macTrace OFF ¥

 -movementTrace OFF ¥

for {set i 0} {$i < $val(nn)} {incr i}

{

set node_($i) [$ns_ node]

$node_($i) random-motion 0

}

source $opt(cp)

source $opt(sc)

for {set i 0} {$i < $val(nn)} {incr i} {

$ns_ at 1.1 "$node_($i) reset";

}

$ns_ at 1.2 "stop"

$ns_ at 1.3 "puts ¥"NS exiting...­¥"; $ns_ halt"

proc stop {} {

global ns_ tracefd namtracefd

$ns_ flush-trace

close $tracefd

close $namtracefd

exit 0

}

$ns_ run

==

cbrgen.tcl

==

Traffic source generator from CMU's mobile code.

$Header: /cvsroot/nsnam/ns-2/indep-utils/cmu-scen-gen/cbrgen.tcl,v 1.4 tomh Exp $#

 85

#=====================================

Default Script Options#

#=====================================

set opt(nn) 0 ;# Number of Nodes

set opt(seed) 0.0

set opt(mc) 0

set opt(pktsize) 512

set opt(rate) 0

set opt(interval) 0.0 ;# inverse of rate

set opt(type) ""

#=====================================

proc usage {} {

 global argv0

 puts "¥nusage: $argv0 ¥[-type cbr|tcp¥] ¥[-nn nodes¥] ¥[-seed seed¥] ¥[-mc

connections¥] ¥[-rate rate¥]¥n"

}

proc getopt {argc argv} {

 global opt

 lappend optlist nn seed mc rate type

 for {set i 0} {$i < $argc} {incr i}

{

 set arg [lindex $argv $i]

 if {[string range $arg 0 0] != "-"} continue

 set name [string range $arg 1 end]

 set opt($name) [lindex $argv [expr $i+1]]

 }

}

create-cbr-connection

proc create-cbr-connection { src dst }

{

 global rng cbr_cnt opt

 set stime [$rng uniform 0.0 360.0]

 set stime1 [expr 20+$stime]

 puts "#¥n# $src connecting to $dst at time $stime¥n#"

 puts "set udp_($cbr_cnt) ¥[new Agent/UDP¥]"

 puts "¥$ns_ attach-agent ¥$node_($src) ¥$udp_($cbr_cnt)"

 86

 puts "set null_($cbr_cnt) ¥[new Agent/Null¥]"

 puts "¥$ns_ attach-agent ¥$node_($dst) ¥$null_($cbr_cnt)"

 puts "set cbr_($cbr_cnt) ¥[new Application/Traffic/CBR¥]"

 puts "¥$cbr_($cbr_cnt) set packetSize_ $opt(pktsize)"

 puts "¥$cbr_($cbr_cnt) set interval_ $opt(interval)"

 puts "¥$cbr_($cbr_cnt) set random_ 1"

 puts "¥$cbr_($cbr_cnt) set maxpkts_ 10000"

 puts "¥$cbr_($cbr_cnt) attach-agent ¥$udp_($cbr_cnt)"

 puts "¥$ns_ connect ¥$udp_($cbr_cnt) ¥$null_($cbr_cnt)"

 puts "¥$ns_ at $stime ¥"¥$cbr_($cbr_cnt) start¥""

 puts "¥$ns_ at $stime1 ¥"¥$cbr_($cbr_cnt) stop¥""

 incr cbr_cnt

}

create-tcp-connection

proc create-tcp-connection { src dst }

{

 global rng cbr_cnt opt

 set stime [$rng uniform 0.0 180.0]

 puts "#¥n# $src connecting to $dst at time $stime¥n#"

 puts "set tcp_($cbr_cnt) ¥[¥$ns_ create-connection ¥

 TCP ¥$node_($src) TCPSink ¥$node_($dst) 0¥]";

 puts "¥$tcp_($cbr_cnt) set window_ 32"

 puts "¥$tcp_($cbr_cnt) set packetSize_ $opt(pktsize)"

 puts "set ftp_($cbr_cnt) ¥[¥$tcp_($cbr_cnt) attach-source FTP¥]"

 puts "¥$ns_ at $stime ¥"¥$ftp_($cbr_cnt) start¥""

 incr cbr_cnt

}

#=====================================

getopt $argc $argv

if { $opt(type) == "" } {

 usage

 exit

} elseif { $opt(type) == "cbr" } {

 if { $opt(nn) == 0 || $opt(seed) == 0.0 || $opt(mc) == 0 || $opt(rate) == 0 } {

 usage

 exit

 87

 }

 set opt(interval) [expr 1 / $opt(rate)]

 if { $opt(interval) <= 0.0 } {

 puts "¥ninvalid sending rate $opt(rate)¥n"

 exit

 }

}

puts "#¥n# nodes: $opt(nn), max conn: $opt(mc), send rate: $opt(interval), seed:

$opt(seed)¥n#"

set rng [new RNG]

$rng seed $opt(seed)

set u [new RandomVariable/Uniform]

$u set min_ 0

$u set max_ 100

$u use-rng $rng

set cbr_cnt 0

set src_cnt 0

for {set i 0} {$i < $opt(nn) } {incr i}

{

 set x [$u value]

 if {$x < 50} {continue;}

 incr src_cnt

 set dst [expr ($i+1) % [expr $opt(nn) + 1]]

 if { $opt(type) == "cbr" } {

 create-cbr-connection $i $dst

 } else {

 create-tcp-connection $i $dst

 }

 if { $cbr_cnt == $opt(mc) } {

 break

 }

 if {$x < 75} {continue;}

 set dst [expr ($i+2) % [expr $opt(nn) + 1]]

 if { $opt(type) == "cbr" } {

 create-cbr-connection $i $dst

 } else {

 88

 create-tcp-connection $i $dst

 }

 if { $cbr_cnt == $opt(mc) } {

 break

 }

}

puts "#¥n#Total sources/connections: $src_cnt/$cbr_cnt¥n#"

==

delay.awk

==

BEGIN{

 highest_packet_id=0;

 duration_total=0;

}

$0 ~/^r.*AGT/{

 receives++;

}

{

 time=$3;

 packet_id=$41;

 if(($1=="s") && ($19=="AGT") && (start_time[packet_id]==0)) {

 start_time[packet_id]=time;

 if(packet_id>highest_packet_id)

 highest_packet_id=packet_id;

 }

 if(($1=="r") && ($19=="AGT") && (end_tim[packet_id]==0)) {

 end_time[packet_id]=time;

 }

 if($1=="d"){

 end_time[packet_id]=-1;

 }

}

END{

 for(packet_id = 0; packet_id <= highest_packet_id; packet_id++) {

 start=start_time[packet_id];

 89

 end=end_time[packet_id];

 if(end != -1 && start < end) {

 packet_duration=end - start;

 duration_total = duration_total + packet_duration;

 }

 }

 printf("%.4f¥n",duration_total/receives);

}

==

frequency.awk

==

BEGIN{

 requests=0;

time=$3;

 id=$5;

 source_ip=$57;

 frequency=0;

}

{

 if(($1=="s") && ($61=="REQUEST") && (id==source_ip))

 {requests++;}

}

END{

 frequency=requests/300;

 printf("%.4f¥n",frequency);

}

==

getRatio.awk

==

BEGIN {

 sendLine = 0;

 recvLine = 0;

 fowardLine = 0;

}

$0 ~/^s.* AGT/ {

 sendLine ++ ;

 90

}

$0 ~/^r.* AGT/ {

 recvLine ++ ;

}

$0 ~/^f.* RTR/ {

 fowardLine ++ ;

}

END {

 printf "cbr s:%d r:%d, r/s Ratio:%.4f, f:%d ¥n", sendLine, recvLine,

(recvLine/sendLine),fowardLine;

 printf "%d %.4f¥n", scr, (recvLine/sendLine) >> outfile;

}

==

load.awk

==

BEGIN{

 recvLine=0;

 load=0;

 Normalized_load=0;

}

{

 if(($1=="r") && ($19=="AGT") && ($35=="cbr"))

 {

 recvLine++;

 }

 if((($1=="s") || ($1=="f")) && ($19=="RTR") &&

(($35=="AODV")||($35=="message")))

 {

 load++;

 }

}

END{

 Normalized_load=load/recvLine;

 printf("l:%d,nload:%.4f¥n",load,Normalized_load)

==

 91

average.awk

==

BEGIN

{

 average=0.0;

 count＝0;

 count_N=10;

}

{

 for(n=0; n<10; n++)

 {

 if($1=="n")

 {

 average=average + $n;

 {

 }

}

END {

 printf "%d %.4f ¥n",time, (average/count_N) >> outfile;

}

 92

Appendix B

As mentioned in the Chapter 3, an Android application used in this research was

developed by Java language. Four functions such as MainActivity.java, GPSActivity.java,

SocketManager.java and TransmitForServer.java have been compiled to process GPS data

transfer and sharing. Workflow, output and other parameters used for each function are

explained in detail below.

In order to run developed Android application a function named MainActivity.java has

been defined, which can call the other functions and show location data information. Secondly,

GPSActivity.java function saving GPS location information that filtered using parameters

such as satellite numbers, GPS accuracy and HDOP parameters. Further, as explained in

Section 2.3, the SocketManager.java shares location data between nearby devices, which

connected through MANET. Finally, TransmitForServer.java upload the collected location

data to server.

 MainActivity.java: Show location data information

 GPSActivity.java: Acquiring, filtering and saving location data

 SocketManager.java: Sharing location data

 TransmitForServer.java: Transmit the location data to server.

==

MainActivity.java

==

package com.ssydiai.filetransmit;

import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Date;

import java.util.List;

 93

import android.net.wifi.WifiInfo;

import android.net.wifi.WifiManager;

import android.os.Bundle;

import android.os.Handler;

import android.os.Message;

import android.app.Activity;

import android.content.Intent;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

import android.widget.Toast;

import java.text.SimpleDateFormat;

import java.util.Iterator;

import android.app.Activity;

import android.content.Context;

import android.content.Intent;

import android.location.Criteria;

import android.location.GpsSatellite;

import android.location.GpsStatus;

import android.location.Location;

import android.location.LocationListener;

import android.location.LocationManager;

import android.location.LocationProvider;

import android.os.Bundle;

import android.provider.Settings;

import android.util.Log;

import android.widget.EditText;

import android.widget.Toast;

public class MainActivity extends Activity {

 private TextView tvMsg;

 private EditText txtIP, txtPort, txtEt;

 private Button btnSend, button1,button2,button3;

 private Handler handler;

 94

 private SocketManager socketManager;

 private EditText editText;

 private LocationManager lm;

 public static float GPSAccuracy;

 public static float GPSAltitude;

 public static float GPSSpeed;

 private static final String TAG="GpsActivity";

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

tvMsg = (TextView)findViewById(R.id.tvMsg);

txtIP = (EditText)findViewById(R.id.txtIP);

txtPort = (EditText)findViewById(R.id.txtPort);

txtEt = (EditText)findViewById(R.id.et);

button1 = (Button)findViewById(R.id.traServer);

button1.setOnClickListener(new OnClickListener()

{

@Override

public void onClick(View v){

Intent intent = new Intent();

intent.setClass(MainActivity.this, TransmitForServer.class);

startActivity(intent);

}

 });

 button2 = (Button)findViewById(R.id.nmea);

 button2.setOnClickListener(new OnClickListener()

{

@Override

public void onClick(View v){

Intent intent = new Intent();

intent.setClass(MainActivity.this, NMEAActivity.class);

startActivity(intent);

}

 95

});

 button3 = (Button)findViewById(R.id.osmmap);

 button3.setOnClickListener(new OnClickListener()

 {

@Override

 public void onClick(View v){

Intent intent = new Intent();

intent.setClass(MainActivity.this, OSMMapActivity.class);

startActivity(intent);

 }

 });

 btnSend = (Button)findViewById(R.id.btnSend);

 btnSend.setOnClickListener(new OnClickListener(){

@Override

public void onClick(View v) {

Intent intent = new Intent(getApplicationContext(),FilesViewActivity.class);

 startActivityForResult(intent, 0);

 }

});

handler = new Handler(){

@Override

public void handleMessage(Message msg) {

switch(msg.what){

case 0:

SimpleDateFormat format = new SimpleDateFormat("hh:mm:ss:SS");

txtEt.append("¥n[" + format.format(new Date()) + "]" + msg.obj.toString());

break;

case 1:

tvMsg.setText("IP:" + GetIpAddress() + " port:" + msg.obj.toString());

break;

case 2:

Toast.makeText(getApplicationContext(),msg.obj.toString(),

Toast.LENGTH_SHORT).show();

 break;

 }

 }

 96

 };

 socketManager = new SocketManager(handler);

 editText=(EditText)findViewById(R.id.editText);

 lm=(LocationManager)getSystemService(Context.LOCATION_SERVICE);

 if(!lm.isProviderEnabled(LocationManager.GPS_PROVIDER)){

 Toast.makeText(this, "open GPS...", Toast.LENGTH_SHORT).show();

 Intent intent=new Intent(Settings.ACTION_LOCATION_SOURCE_SETTI

NGS);

Acquiring GPS location data

 startActivityForResult(intent,0);

 return;

 }

 String bestProvider = lm.getBestProvider(getCriteria(), true);

LocationManager.GPS_PROVIDER

 Location location= lm.getLastKnownLocation(bestProvider);

 updateView(location);

 lm.addGpsStatusListener(listener);

If location information has been changed get the new location information

 lm.requestLocationUpdates(LocationManager.GPS_PROVIDER, 1000, 1,

locationListener);

 }

@Override

 protected void onActivityResult(int requestCode, int resultCode, Intent data) {

 if (resultCode == RESULT_OK){

 final ArrayList<String> fileName =

data.getStringArrayListExtra("filename

");

 final ArrayList<String> safeFileName =

data.getStringArrayListExtra("safe

FileName");

 final String ipAddress = txtIP.getText().toString();

 final int port = Integer.parseInt(txtPort.getText().toString());

 Message.obtain(handler, 0, "It's sending" + ipAddress + ":" + port)

.sendToTarget();

 Thread sendThread = new Thread(new Runnable(){

@Override

 97

 public void run() {

socketManager.SendFile(fileName, safeFileName, ipAddress, port);

 }

 });

 sendThread.start();

 }

 }

 public String GetIpAddress() {

 WifiManager wifiManager = (WifiManager) getSystemService(WIFI_SERVICE);

 WifiInfo wifiInfo = wifiManager.getConnectionInfo();

 int i = wifiInfo.getIpAddress();

 return (192 + "." + 168 + "." + 1 + "." + 201);

}

@Override

Showing the GPS location information

 protected void onDestroy() {

 super.onDestroy();

 }

 private LocationListener locationListener=new LocationListener() {

public void onLocationChanged(Location location) {

updateView(location);

Log.i(TAG, "時間："+location.getTime());

Log.i(TAG, "経度："+location.getLongitude());

Log.i(TAG, "緯度："+location.getLatitude());

Log.i(TAG, "海拔："+location.getAltitude()+"m");

Log.i(TAG, "精度："+location.getAccuracy()+"m");

Log.i(TAG, "速度："+location.getSpeed()+"m/s");

 }

public void onStatusChanged(String provider, int status, Bundle extras) {

switch (status) {

case LocationProvider.AVAILABLE:

Log.i(TAG, "今の状態");

 break;

 case LocationProvider.OUT_OF_SERVICE:

Log.i(TAG, "今の GPS状況");

 98

break;

case LocationProvider.TEMPORARILY_UNAVAILABLE:

Log.i(TAG, "停止原因");

 break;

 }

 }

public void onProviderEnabled(String provider) {

Location location=lm.getLastKnownLocation(provider);

updateView(location);

 }

public void onProviderDisabled(String provider) {

 updateView(null);

 }

 };

 private List<GpsSatellite> numSatelliteList = new

ArrayList<GpsSatellite>();

GpsStatus.Listener listener = new GpsStatus.Listener() {

public void onGpsStatusChanged(int event) {

 switch (event) {

 case GpsStatus.GPS_EVENT_FIRST_FIX:

 Log.i(TAG, "初めて定位");

 break;

 case GpsStatus.GPS_EVENT_SATELLITE_STATUS:

 Log.i(TAG, "衛星状態変更");

 GpsStatus gpsStatus=lm.getGpsStatus(null);

 int maxSatellites = gpsStatus.getMaxSatellites();

 Iterator<GpsSatellite> iters = gpsStatus.getSatellites().iterator();

numSatelliteList.clear();

int count = 0;

while (iters.hasNext() && count <= maxSatellites) {

GpsSatellite s = iters.next();

numSatelliteList.add(s);

count++;

}

System.out.println(count+"衛星");

 break;

 99

 case GpsStatus.GPS_EVENT_STARTED:

Log.i(TAG, "定位開始");

 break;

 case GpsStatus.GPS_EVENT_STOPPED:

Log.i(TAG, "定位終了");

break;

 }

 };

 };

* @param location

*/

private void updateView(Location location){

if(location!=null){

GPSAccuracy = Float.valueOf(location.getAccuracy());

GPSSpeed = Float.valueOf(location.getSpeed());

 editText.setText("Location information¥n¥n" +"Satellite numbers ： " +

numSatelliteList.size() +"¥nLongitude：");

editText.append(String.valueOf(location.getLongitude()));

editText.append("¥nLatitude：");

editText.append(String.valueOf(location.getLatitude()));

editText.append("¥nAccuracy：");

editText.append(String.valueOf(location.getAccuracy()));

SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

editText.append("¥nSave Time：");

editText.append(sdf.format(location.getTime()));

editText.append("¥nSpeed：");

editText.append(String.valueOf(location.getSpeed()));

editText.append("¥nk! ");

editText.append(String.valueOf(GPSAccuracy));

 }else{

 editText.getEditableText().clear();

 }

 }

 public static float upAccuracy(float str2){

 float str1 = GPSAccuracy;

 100

 return str1;

 }

 public static float upAltitude(float str3){

float str1 = GPSAltitude;

 return str1;

 }

 public static float upSpeed(float str4){

float str1 = GPSSpeed;

 return str1;

 }

 private Criteria getCriteria(){

 Criteria criteria=new Criteria();

 criteria.setAccuracy(Criteria.ACCURACY_FINE);

criteria.setSpeedRequired(false);

 criteria.setCostAllowed(false);

criteria.setBearingRequired(false);

criteria.setAltitudeRequired(false);

criteria.setPowerRequirement(Criteria.POWER_LOW);

 return criteria;

 }

}

==

GPSActivity.java

==

package com.ssydiai.filetransmit;

import android.app.Activity;

import android.os.Bundle;

import android.os.Environment;

import java.util.Calendar;

import android.os.Bundle;

import android.os.Handler;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.DataOutputStream;

import java.io.File;

 101

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.FileWriter;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.URL;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.TextView;

import android.widget.Toast;

import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Calendar;

import java.util.HashMap;

import java.util.Iterator;

import java.util.List;

import nmea.NmeaCommon;

import nmea.NmeaFactory;

import nmea.NmeaGpgga;

import nmea.NmeaGpgsv;

import nmea.NmeaManager;

import nmea.NmeaSatellite;

import android.location.GpsStatus;

import android.location.Location;

import android.location.LocationManager;

import android.util.Log;

import android.util.Pair;

import android.widget.ScrollView;

import java.sql.Date;

import java.text.SimpleDateFormat;

import java.util.Iterator;

import android.app.Activity;

import android.content.Context;

 102

import android.content.Intent;

import android.location.Criteria;

import android.location.GpsSatellite;

import android.location.GpsStatus;

import android.location.Location;

import android.location.LocationListener;

import android.location.LocationManager;

import android.location.LocationProvider;

import android.os.Bundle;

import android.provider.Settings;

import android.util.Log;

import android.widget.EditText;

import android.widget.Toast;

public class NMEAActivity extends Activity{

private static final String TAG = "GpsStatus";

private static final String LF = "¥n";

private NmeaManager mNmeaManager;

private NmeaFactory mNmeaFactory;

private NmeaGpgga mNmeaGpgga;

private GPSActivity mGPSActivity;

private float mNumSatellites ;

public long time ;

public long judge;

public long timeold;

public float latitude ;

public float longitude ;

public static float hdop ;

public float accuracy;

public float altitude;

public float speed;

public int IDNum;

public int LoopNum;

public String location;

private SatelliteView mSatelliteView;

private ScrollView mScrollView;

 103

private TextView mTextViewResult;

private TextView mShowSaveData;

private LocationManager lm;

private static final String TAG1="GpsActivity";

private HashMap<String,String> mHash = new HashMap<String,String>();

private EditText editText;

public static float GPSAccuracy;

public static float GPSAltitude;

public static float GPSSpeed;

Setting the location data saving path

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_nmea);

 mSatelliteView = (SatelliteView) findViewById(R.id.SatelliteView);

 mScrollView = (ScrollView) findViewById(R.id.ScrollView);

 mTextViewResult = (TextView) findViewById(R.id.TextView1);

 Button btnRadar = (Button) findViewById(R.id.Button_radar);

 btnRadar.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View view) {

 }

 });

 Button saveLogging = (Button) findViewById(R.id.LoggingGPS);

 saveLogging.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View view) {

 }

 });

Button btnNmea = (Button) findViewById(R.id.Button_nmea);

btnNmea.setOnClickListener(new View.OnClickListener() {

@Override

 public void onClick(View view) {

 execNmea();

 }

 });

 104

 mNmeaManager = new NmeaManager(this);

 mNmeaFactory = new NmeaFactory();

 execRadar();

 }

 // Save GPS file

 protected void saveGPSLogging() {

try {

 if (Environment.MEDIA_MOUNTED.equals(Environment

 .getExternalStorageState())) {

String datetime1 = "";

String datetime2 = "";

SimpleDateFormat tempDate1 = new SimpleDateFormat("yyyy-MM-dd");

SimpleDateFormat tempDate2 = new SimpleDateFormat("hh:mm:ss");

datetime1 = tempDate1.format(new java.util.Date()).toString();

datetime2 = tempDate2.format(new java.util.Date()).toString();

final String PATH = "/sdcard/yuGPSLogs/"; // Save Path

final String FILENAME = "/yuFullGPSNMEATEST.gpx";

 final String FILENAME4 = "/yuFilterGPSSongFormatNMEATEST.txt";

 final String FILENAME5 = "/yuAllDataGPSSongFormat.txt";

 File path = new File(PATH);

File f = new File(PATH + FILENAME);

FileWriter fw = null;

FileWriter fw4 = null;

FileWriter fw5 = null;

BufferedWriter bw = null;

BufferedWriter bw4 = null;

BufferedWriter bw5 = null;

try {

fw = new FileWriter(PATH + FILENAME, true);

 fw4 = new FileWriter(PATH + FILENAME4, true);

 fw5 = new FileWriter(PATH + FILENAME5, true);

 bw = new BufferedWriter(fw);

 bw4 = new BufferedWriter(fw4);

 bw5 = new BufferedWriter(fw5);

Filter GPS location data and saving on device

 String startXML = "<?xml version=¥"1.0¥" encoding=¥"UTF-8¥"?>";

 105

 String myreadline = "hdop=" + hdop + "latitude=" + latitude + "longitude=" +

longitude + "NumSatellites=" + mNumSatellites + "accuracyGPS=" + accuracy;

 String startGPX = "<gpx creator=¥"yu!!¥" version=¥"1.1¥">";

 String trk = "<trk>¥n<trkseg>";

String trkpt = "<trkpt lat=¥"" + latitude + "¥" lon=¥"" + Math.abs(longitude) + "¥">";

 String ele = "<ele>" + altitude + "</ele>";

 String GPXTime = "<time>" + datetime1 + "T" + datetime2 + "Z" + "</time>";

 String trkptEnd = "</trkpt>";

String endGPX = "</trkseg>¥n</trk>¥n</gpx>";

 bw.write(trkpt);

 bw.write(GPXTime);

 bw.write(ele);

 bw.write(trkptEnd);

 bw.newLine();

 bw.flush();

 bw.close();

 fw.close();

 bw5.write(IDNum + "|" + datetime1 + "|" + datetime2 + "| | | | |" + " |

Nexus7 | |" + hdop + "|" + accuracy + "|" + mNumSatellites + "|" + speed +" | | | | |" +

latitude + "|" + Math.abs(longitude));

bw5.newLine();

bw5.flush();

 bw5.close();

 fw5.close();

 if(hdop <= 1.3 & mNumSatellites >= 4 & accuracy <= 30)

 {

 bw4.write(IDNum + "|" + datetime1 + "|" + datetime2 + "| | | | |" + " |

Nexus7 | |" + hdop + "|" + accuracy + "|" + mNumSatellites + "|" + speed +" | | | | |" +

latitude + "|" + Math.abs(longitude));

 bw4.newLine();

 bw4.flush();

 bw4.close();

 fw4.close();

 }

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 106

 try {

 bw.close();

 fw.close();

 } catch (IOException e1) {

 }

 }

if (path.exists() && f.exists()) {

 Toast.makeText(NMEAActivity.this, "start save file",

 Toast.LENGTH_SHORT).show();

 } else {

 if (!path.exists()) {

 path.mkdirs();

 }

 if (!f.exists()) {

 }

 }

 }

 } catch (Exception e) {

 Log.d("Fover", "OH no write SDcard faild");

 }

 }

@Override

 protected void onResume() {

 super.onResume();

 GpsStatus.NmeaListener listener = new GpsStatus.NmeaListener() {

@Override

 public void onNmeaReceived(long timestamp, String nmea) {

 execNmea(timestamp, nmea);

 }

 };

 mNmeaManager.addNmeaListener(listener);

 mNmeaManager.requestLocationUpdates();

 }

@Override

 protected void onPause() {

 super.onPause();

 107

 mNmeaManager.removeNmeaListener();

 mNmeaManager.removeUpdates();

 }

 private void execRadar() {

 mSatelliteView.setVisibility(View.VISIBLE);

mScrollView.setVisibility(View.GONE);

 }

 private void execNmea() {

 mSatelliteView.setVisibility(View.GONE);

 mScrollView.setVisibility(View.VISIBLE);

 }

NEMA parameters

 private void execNmea(long timestamp, String nmea) {

 mNmeaFactory.setTimestamp(timestamp);

 time = mNmeaFactory.setTimestamp(timestamp);

 hdop = NmeaGpgga.ggahdop(hdop);

 latitude = NmeaGpgga.ggalatitude(latitude);

 longitude = NmeaGpgga.ggalongitude(longitude);

 mNumSatellites = NmeaGpgga.num_satellites(mNumSatellites);

 System.out.println("HDOP："+hdop+"!!");

 judge = time - timeold;

 System.out.println("time："+time+"!!");

 System.out.println("timeold："+timeold+"!!");

 System.out.println("judge："+judge+"!!");

 if(judge>=5)

 {

 saveGPSLogging();

 timeold = time;

 }

 // get the accuracy, location and speed information

 accuracy = MainActivity.upAccuracy(accuracy);

 altitude = MainActivity.upAltitude(altitude);

 speed = MainActivity.upSpeed(speed);

 mNmeaFactory.parse(nmea);

 mSatelliteView.setSatellites(mNmeaFactory.getAllSatellites());

 108

 Pair<String, String> p = mNmeaFactory.getPair();

 mHash.put(p.first, p.second);

 Iterator<String> iterator = mHash.keySet().iterator();

 String msg = "";

 while (iterator.hasNext()) {

 String key = (String) iterator.next();

 msg += mHash.get(key) + LF + LF;

 }

 mTextViewResult.setText(msg);

 }

@SuppressWarnings("unused")

 private void log_d(String msg) {

 Log.d(TAG, msg);

 }

 }

==

SocketManager.java

==

package com.ssydiai.filetransmit;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.io.OutputStream;

import java.io.OutputStreamWriter;

import java.net.ServerSocket;

import java.net.Socket;

import java.util.ArrayList;

import android.os.Environment;

import android.os.Handler;

import android.os.Message;

public class SocketManager {

 private ServerSocket server;

 109

 private Handler handler = null;

Sharing GPS location using Ad-hoc network

public SocketManager(Handler handler){

 this.handler = handler;

 int port = 9999;

 while(port > 9000){

 try {

 server = new ServerSocket(port);

 break;

 } catch (Exception e) {

 port--;

 }

 }

 SendMessage(1, port);

 Thread receiveFileThread = new Thread(new Runnable(){

@Override

 public void run() {

 while(true){//receive

 ReceiveFile();

 }

 }

 });

 receiveFileThread.start();

 }

void SendMessage(int what, Object obj){

 if (handler != null){

 Message.obtain(handler, what, obj).sendToTarget();

 }

 }

void ReceiveFile(){

 try{

 Socket name = server.accept();

 InputStream nameStream = name.getInputStream();

 InputStreamReader streamReader = new InputStreamReader

(nameStream);

 110

 BufferedReader br = new BufferedReader(streamReader);

 String fileName = br.readLine();

br.close();

streamReader.close();

nameStream.close();

name.close();

SendMessage(0, "Now Receiving:" + fileName);

 Socket data = server.accept();

InputStream dataStream = data.getInputStream();

String savePath = Environment.getExternalStorageDirectory().getPath() +

"/" + fileName;

FileOutputStream file = new FileOutputStream(savePath, false);

byte[] buffer = new byte[1024];

int size = -1;

while ((size = dataStream.read(buffer)) != -1){

file.write(buffer, 0 ,size);

}

 file.close();

 dataStream.close();

data.close();

SendMessage(0, fileName + "Receive Completed");

}catch(Exception e){

SendMessage(0, "Receive Error:¥n" + e.getMessage());

 }

 }

Transmit data (device to device)

public void SendFile(ArrayList<String> fileName, ArrayList<String> path, String

ipAddress, int port){

 try {

 for (int i = 0; i < fileName.size(); i++){

 Socket name = new Socket(ipAddress, port);

 OutputStream outputName = name.getOutputStream();

OutputStreamWriter outputWriter = new

OutputStreamWriter(outputName);

BufferedWriter bwName = new BufferedWriter(outputWriter);

bwName.write(fileName.get(i));

 111

bwName.close();

outputWriter.close();

outputName.close();

name.close();

SendMessage(0, "Now Sending" + fileName.get(i));

Socket data = new Socket(ipAddress, port);

OutputStream outputData = data.getOutputStream();

FileInputStream fileInput = new FileInputStream(path.get(i));

int size = -1;

byte[] buffer = new byte[1024];

while((size = fileInput.read(buffer, 0, 1024)) != -1){

outputData.write(buffer, 0, size);

}

 outputData.close();

fileInput.close();

data.close();

SendMessage(0, fileName.get(i) + "Send Completed");

}

SendMessage(0, "All files Completed");

 } catch (Exception e) {

SendMessage(0, "Send Error:¥n" + e.getMessage());

 }

 }

}

==

TransmitForServer.java

==

package com.ssydiai.filetransmit;

import android.app.Activity;

import android.os.Bundle;

import java.io.BufferedReader;

import java.io.DataOutputStream;

import java.io.FileInputStream;

import java.io.InputStream;

import java.io.InputStreamReader;

 112

import java.net.HttpURLConnection;

import java.net.URL;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

import android.widget.Toast;

public class TransmitForServer extends Activity{

private String uploadFile = "/storage/emulated/0/yuFilterGPSSongFormatNMEATEST.txt ";

private String srcPath = "/storage/emulated/0/yuFilterGPSSongFormatNMEATEST.txt ";

private String actionUrl = "http://160.193.95.10/receive_file.php";

private TextView mText1;

private TextView mText2;

private Button mButton;

@Override

 protected void onCreate(Bundle savedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_transmitoserver);

mText1 = (TextView) findViewById(R.id.uploadText);

 mText1.setText("File address：¥n" + uploadFile);

 mText2 = (TextView) findViewById(R.id.uploadIPText);

 mText2.setText("Server address：¥n" + actionUrl);

mButton = (Button) findViewById(R.id.uploadButton);

 mButton.setOnClickListener(new View.OnClickListener()

 {

@Override

Upload GPS location data to Server

 public void onClick(View v)

 {

 uploadFile(actionUrl);

 }

 });

 }

 private void uploadFile(String uploadUrl)

 113

 {

 String end = "¥r¥n";

 String twoHyphens = "--";

 String boundary = "******";

 try

 {

 URL url = new URL(uploadUrl);

 HttpURLConnection httpURLConnection = (HttpURLConnection) url

 .openConnection();

 httpURLConnection.setDoInput(true);

 httpURLConnection.setDoOutput(true);

 httpURLConnection.setUseCaches(false);

 httpURLConnection.setRequestMethod("POST");

 httpURLConnection.setRequestProperty("Connection", "Keep-Alive");

 httpURLConnection.setRequestProperty("Charset", "UTF-8");

 httpURLConnection.setRequestProperty("Content-Type",

 "multipart/form-data;boundary=" + boundary);

 DataOutputStream dos = new DataOutputStream(

 httpURLConnection.getOutputStream());

 dos.writeBytes(twoHyphens + boundary + end);

 dos.writeBytes("Content-Disposition: form-data; name=¥"uploadedfile¥";

filename=¥"" + srcPath.substring(srcPath.lastIndexOf("/") + 1) + "¥"" + end);

 dos.writeBytes(end);

 FileInputStream fis = new FileInputStream(srcPath);

 byte[] buffer = new byte[8192]; // 8k

 int count = 0;

 while ((count = fis.read(buffer)) != -1)

 {

 dos.write(buffer, 0, count);

 }

 fis.close();

 dos.writeBytes(end);

 dos.writeBytes(twoHyphens + boundary + twoHyphens + end);

 dos.flush();

 InputStream is = httpURLConnection.getInputStream();

 InputStreamReader isr = new InputStreamReader(is, "utf-8");

 114

 BufferedReader br = new BufferedReader(isr);

 Toast.makeText(this, result, Toast.LENGTH_LONG).show();

 dos.close();

 is.close();

 } catch (Exception e)

 {

 e.printStackTrace();

 setTitle(e.getMessage());

 }

 }

 }

 115

Appendix C

As mentioned in the Chapter 3, map-matching was carried out by using Hausdorff

distance algorithm which developed using python language. This research modified Hausdorff

distance algorithm to develop a new python function (hausdorffYu.py) used for map-matching.

GPS tracks and road network data were used as input for map-matching. The hausdorffYu.py

describes how to connect to PostgreSQL/PostGIS database, calculate the GPS tracks and

roads geography spatially intersect and save results as shape file.

==

hausdorffYu.py

==

#!C:¥Python24¥python.exe -u

#-*- coding:utf-8 -*-

import math

import os

import pgdb

from shapely.geometry import *

from shapely.wkt import loads

from datetime import datetime,timedelta

from osgeo import ogr

class HAUSDORFF:

def __init__(self,gps,utb,ute):

connect to database

 self.conn = pgdb.connect(host="localhost:5432", database='********', user='****',

password='**************')

 self.cur = self.conn.cursor()

 self.gps = gps

 self.utb = utb

 self.ute = ute

 self.attrlist = []

 self.featlist = []

 self.featenvl = []

 116

 def read(self,path):

 sql = "select oid,ST_AsEWKT(the_geom) from trace where path = %i and time >

to_timestamp('%s', 'YYYY-MM-DD HH24:MI:SS') and time < to_timestamp('%s',

'YYYY-MM-DD HH24:MI:SS') order by time" % (path,self.utb,self.ute)

 print sql

 self.cur.execute(sql)

 pathlist = self.cur.fetchall()

 print 'path: ',len(pathlist)

 if(len(pathlist) > 0):

 wkt = 'LINESTRING('

 for pathr in pathlist:

 #print pathr[1][10:]

 p = loads(pathr[1][10:])

 wkt += str(p.x)+' '+str(p.y) + ','

 wkt = wkt[:-1]

 wkt += ')'

 feat = [wkt,path,0,len(pathlist),loads(wkt).length]

 self.featlist += [feat]

 print 'read_finished'

 def read_(self,infilename):

open shape file

 shpnam = infilename

 ds = ogr.Open(shpnam)

read shape file

 la = ds.GetLayer(0)

 extent = la.GetExtent()

 self.featenvl = [extent[0]-50,extent[1]+50,extent[2]-50,extent[3]+50]

 layerdef = la.GetLayerDefn()

 for i in range(layerdef.GetFieldCount()):

 defn = layerdef.GetFieldDefn(i)

 self.attrlist +=

[(defn.GetName(),defn.GetWidth(),defn.GetType(),defn.GetPrecision())]

 f = la.GetNextFeature()

 while f is not None:

 attr = []

 for i in range(f.GetFieldCount()):

 117

 attr += [f.GetField(i)]

 curv = []

 geom = f.GetGeometryRef() # get the first geometry (supposed a polygon)

 wkt = geom.ExportToWkt()

 feat = [wkt] + attr

 self.featlist += [feat]

 f = la.GetNextFeature()

#close shape file

 del ds

 def fetchroad(self,poly):

 polywkt = poly.to_wkt()

 sql = "select gid as id,st_asText(the_geom) from osaka_roads_900913 where

ST_Intersects('%s'::geometry,the_geom)" % (polywkt)

 self.cur.execute(sql)

 recordlist = self.cur.fetchall()

 if len(recordlist)>0:

 geomlist = []

 for rec in recordlist:

 wkt = rec[1]

 geomlist += [(rec[0],wkt)]

 if len(recordlist) > 0 and len(geomlist) > 0:

 return geomlist

 else:

 return None

 def saveasshape(self,geomtype,featlist,outputfile): # save as shape

 if geomtype == 0:

 datatype = ogr.wkbPoint

 elif geomtype == 1:

 datatype = ogr.wkbLineString

 elif geomtype == 2:

 datatype = ogr.wkbPolygon

 driver = ogr.GetDriverByName("ESRI Shapefile")

 if os.access(outputfile, os.F_OK):

 driver.DeleteDataSource(outputfile)

create shape file

 ds_new = driver.CreateDataSource(outputfile)

 118

 layer_new = ds_new.CreateLayer(outputfile, None, datatype)

 field_id = ogr.FieldDefn("id",ogr.OFTInteger)

 field_id.SetWidth(8)

 layer_new.CreateField(field_id)

 field_max = ogr.FieldDefn("hausdorff",ogr.OFTReal)

 field_max.SetWidth(8)

 field_max.SetPrecision(2)

 layer_new.CreateField(field_max)

 field_mean = ogr.FieldDefn("weighed",ogr.OFTReal)

 field_mean.SetWidth(8)

 field_mean.SetPrecision(2)

 layer_new.CreateField(field_mean)

 field_min = ogr.FieldDefn("shortest",ogr.OFTReal)

 field_min.SetWidth(8)

 field_min.SetPrecision(2)

 layer_new.CreateField(field_min)

 if(len(featlist) > 0):

 for feat in featlist:

 geom = ogr.CreateGeometryFromWkt(feat[0])

 ft_new = ogr.Feature(layer_new.GetLayerDefn())

 ft_new.SetGeometry(geom)

 ft_new.SetField('id', feat[1])

 ft_new.SetField('hausdorff', feat[2])

 ft_new.SetField('weighed', feat[3])

 ft_new.SetField('shortest', feat[4])

 layer_new.CreateFeature(ft_new)

 # close shape file

 ds_new.Destroy()

 def match(self):

 utdict = {}

 for feat in self.featlist:

 time0 = datetime.utcnow()

 wkt = feat[0]

 linb = loads(wkt)

 # set the buffsize = 23 because (6.5 x 2 + 10)

 buffsize = 23

 119

 buff = linb.buffer(buffsize)

self.saveasshape(2,[[buff.to_wkt(),1,0,0,0]],'hausdorff_'+str(feat[1])+'_buffer.shp')

save as shape file (hausdorff_num_buffer.shp)

 print 'b'

 linalist = self.fetchroad(buff)

 print 'e'

 if linalist == None:

 return

 ftlist = []

 count = 0

 for tup in linalist:

 id = tup[0]

 lina = loads(tup[1])

 print count

 count += 1

 dist = self.hausdorff(lina,linb)

 dist[-1] = lina.crosses(buff)

 ft = [lina.to_wkt(),id] + dist

 ftlist += [ft]

 time1 = datetime.utcnow()

 utdict[feat[1]] = (time1-time0).seconds+(time1-time0).microseconds/1000000.0

 if len(ftlist) > 0:

 geomtype = 1

 outfilename = 'hausdorff_'+str(feat[1])+'_match.shp'

 test.saveasshape(geomtype,ftlist,outfilename)

 print "-----------------------¥n%8s %12s¥n-----------------------" % ('trace_id','match_time')

 for id,ut in utdict.items():

 print "%8i %12.3f" % (id,ut)

 print "--------------------------"

 #hausdorff distance between linearstring geometry (shapely)

 def hd(self,lina,linb):

 return max([self.hausdorff(lina,linb),self.hausdorff(linb,lina)])

 def hausdorff(self,lina,linb):

 hab = []

 weighed = 0

 pnta = lina.coords

 120

 sizea = len(pnta)

 for i in range(sizea):

 x,y = pnta[i][0:2]

 hab += [Point(x,y).distance(linb)]

 return [max(hab),sum(hab)/len(hab),min(hab)]

 def hausdorff_(self,lina,linb):

 hab = []

 hba = []

 weighed = 0

 pnta = lina.coords

 pntb = linb.coords

 sizea = len(pnta)

 for i in range(1,sizea):

 pa0 = pnta[i-1]

 pa1 = pnta[i]

 sht0 = self.shortest(pa0,pntb)

 sht1 = self.shortest(pa1,pntb)

 hab += [max(sht0[2],sht1[2])]

 seg = LineString(((pa0[0], pa0[1]), (pa1[0], pa1[1])))

 loc = sht0[0:2] + sht1[0:2]

 loc.sort()

 if loc[0]==loc[1] and loc[2]==loc[3]:

 hba += [0]

 else:

 dist = [0]

 for i in range(loc[1],loc[2]+1):

 pb = pntb[i]

 dist += [Point(pb[0],pb[1]).distance(seg)]

 hba += [max(dist)]

 weighed += max(hab[-1],hba[-1])*seg.length/lina.length

 return [max(max(hab),max(hba)),weighed,min(min(hab),min(hba))]

 def shortest(self,pa,pntb):

 size = len(pntb)

 res = None

 for i in range(1,size):

 pb0 = pntb[i-1]

 121

 pb1 = pntb[i]

 seg = LineString(((pb0[0], pb0[1]), (pb1[0], pb1[1])))

 dist = Point(pa[0],pa[1]).distance(seg)

 if res == None:

 res = [i-1,i,dist]

 else:

 if dist < res[2]:

 res = [i-1,i,dist]

 return res

 def hausdorff02(self,lina,linb):

 hab = []

 para = 0

 acum = 0

 pnt0 = None

 pnta = lina.coords

 pntb = linb.coords

 for pa in pnta:

 pnt1 = Point(pa[0],pa[1])

 hab += [pnt1.distance(linb)]

 if pnt0 != None:

 len = pnt1.distance(pnt0)

 para += len

 acum += (hab[-1]+hab[-2])*0.5*len

 pnt0 = pnt1

 return [max(hab),acum/para,min(hab)]

 if __name__ == "__main__":

 gps = ''

 utb = 'yyyy-mm-dd 00:00:00'

 ute = ' yyyy-mm-dd 23:59:59'

 test=HAUSDORFF(gps,utb,ute)

 infilename = "tmp_allpath.shp"

 test.read(yyyymmdd-no)

 test.match()

 print 'finished!'

