Equilibrium Sorption of Structurally Diverse Organic Ions to Bovine Serum Albumin

Luise Henneberger, Kai-Uwe Goss, and Satoshi Endo

<table>
<thead>
<tr>
<th>Citation</th>
<th>Environmental Science & Technology, 50(10): 5119-5126</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue Date</td>
<td>2016-04-20</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
<tr>
<td>Right</td>
<td>This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science & Technology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.est.5b06176</td>
</tr>
<tr>
<td>URI</td>
<td>http://dlisv03.media.osaka-cu.ac.jp/il/meta_pub/G0000438repository_15205851-50-10-5119</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1021/acs.est.7b05144</td>
</tr>
</tbody>
</table>

SURE: Osaka City University Repository
http://dlisv03.media.osaka-cu.ac.jp/il/meta_pub/G0000438repository
Equilibrium Sorption of Structurally Diverse Organic Ions to Bovine Serum Albumin

Luise Henneberger,† Kai-Uwe Goss,‡ Satoshi Endo,§*

† Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, D-04318 Leipzig, Germany

‡ University of Halle-Wittenberg, Institute of Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle, Germany

§ Osaka City University, Urban Research Plaza & Graduate School of Engineering, Sugimoto 3-138, Sumiyoshi-ku, 558-8585 Osaka, Japan

ABSTRACT

Reliable partitioning data are essential for assessing the bioaccumulation potential and the toxicity of chemicals. In contrast to neutral organic chemicals, the partitioning behavior of ionogenic organic chemicals (IOCs) is still a black box for environmental scientists. Partitioning to serum albumin, the major protein in blood plasma, strongly influences the freely dissolved concentration of many chemicals (including IOCs), which affects their transport and distribution in the body. Because consistent datasets for partitioning of IOCs are rarely available, bovine serum albumin-water partition coefficients \(K_{BSA/w} \) were measured in this study for 45 anionic
and 4 cationic organic chemicals, including various substituted benzoic and naphthoic acids, sulfonates and several pesticides and pharmaceuticals. The results of this study suggest that binding to BSA is substantially influenced by the three dimensional structure of the chemicals and the position of substitutions on the sorbing molecules. For example, we found a difference of > 1.5 log units between isomeric chemicals such as 3,4-dichlorobenzoic acid and 2,6-dichlorobenzoic acid, 1-naphthoic acid and 2-naphthoic acid, and 2,4,6-trimethylbenzoic acid and 2,4,6-trimethylbenzenesulfonate. Conventional modeling approaches (e.g. based on octanol-water partition coefficients) poorly predict log $K_{BSA/w}$ of organic ions ($R^2 \leq 0.5$), partially because they do not capture the observed steric effects. Hence, alternative modeling strategies will be required for accurate prediction of serum albumin-water partition coefficients of organic ions.

Introduction

Partitioning of ionogenic organic chemicals (IOCs) into biological tissues and their constituents such as various lipids and proteins is of great importance, as it has direct implications for bioconcentration, bioaccumulation, and toxicity of IOCs. However, established models to predict relevant partition coefficients are almost exclusively focused on neutral organic chemicals including the neutral species of ionizable chemicals. For example, a simple regression with log K_{ow} is widely used as a screening model, which sometimes gives a surprisingly good approximation (e.g., for membrane-water partition coefficients).\(^1\) Polyparameter linear free energy relationships (PP-LFERs) can give more accurate predictions for broader ranges of chemicals and partition phases.\(^2\)\(^-\)\(^3\) These empirical models are convenient but applicable only for neutral chemicals. To our knowledge, there is only one model that was
developed specifically for the prediction of biopartitioning of IOCs in general. One reason for the absence of models may be the lack of experimental data that are measured under consistent conditions for partitioning of charged chemicals.

Bioaccumulation models used for risk assessment often assume that the dominant sorption phase in organisms is the total lipid fraction. For IOCs storage lipids are expected to play a minor role while phospholipid membranes and the protein fraction of an organism are supposed to contribute significantly to the overall partitioning process. Serum albumin, the most abundant protein in blood plasma, is likely an important sorption phase for IOCs, because research on pharmaceuticals and endogenous chemicals has long shown that serum albumin binds a broad spectrum of chemicals, especially hydrophobic anions of medium size. Binding to serum albumin has major impact on transport and distribution of a target chemical in the body, because it increases the sorption capacity of the blood and decreases the free, unbound concentration of the chemical. Moreover, fetal bovine serum is widely used for cell culture assays, where serum albumin binding often determines the bound and the unbound fractions of the test chemical in the medium. Furthermore, serum albumin is often considered a generic protein to represent various properties of the bulk protein fraction of organisms, including sorption properties, although this assumption may not always be valid and thus needs careful evaluation.

In the literature, binding of a target chemical to protein, e.g., bovine serum albumin (BSA), is typically reported as association constant $K_a \ [M^{-1}]$. For 1:1 binding K_a is defined as:

$$K_a = \frac{C_{\text{bound}}}{C_{\text{free}}[\text{BSA}]}$$ (1)
where \(C_{\text{free}} \) [mol/L_{water}] is the freely dissolved molar concentration of the chemical, \(C_{\text{bound}} \) the molar concentration of the chemical bound to BSA, and \([\text{BSA}]\) the free molar concentration of BSA in the solution. The extent of binding to BSA can also be expressed as BSA-water partition coefficient \((K_{\text{BSA/w}} \text{[L}_{water}/\text{kg}_{\text{BSA}}]) \), which is preferably used by environmental scientists and is defined as the ratio of the concentration of the target chemical in BSA \((C_{\text{BSA}} \text{[mol/kg}_{\text{BSA}}]) \) to the freely dissolved concentration of the chemical:

\[
K_{\text{BSA/w}} = \frac{C_{\text{BSA}}}{C_{\text{free}}} \quad (2)
\]

In case the chemical concentration is so low that BSA binding is far below saturation, \(K_a \) and \(K_{\text{BSA/w}} \) are convertible with a constant factor (i.e., \(K_a = 10^{1.83} K_{\text{BSA/w}} \)).

Large amounts of data are available in the literature for binding of pharmaceuticals (including also IOCs) to human serum albumin. However, reliability and comparability of these data are difficult to evaluate. As reviewed by Nilsson et al., data for protein binding are often published without carefully controlling all the factors that can influence the partitioning process, e.g., temperature; the pH value; concentrations of the test chemical, salt, and the protein; non-specific adsorption to the used equipment; equilibrium disturbances; and leaking of dialysis membrane. Moreover, pharmaceuticals are often multifunctional molecules with complex structure. A collection of data for such diverse chemicals is difficult to interpret in terms of structural influences on the binding constant. Systematically measured data for a series of chemicals with incremental changes in the substructure units (e.g., the number of Cl on the benzene ring) or data for a pair of chemicals that differ by only one structural feature may shed additional light on the binding mechanisms of IOCs to serum albumin.

This study aims to elucidate how the molecular structure of organic ions (e.g., different basic structures, substitutions and charged functional groups) influences their partitioning to serum
albumin and which mechanisms underlie the sorption process. To this end, we investigated the
partitioning of systematically selected organic anions and cations to BSA, starting from simple
compounds onwards to more complex structures. Particularly, many varyingly substituted
benzenes and naphthalenes with an anionic functional group were included to study the
influences of molecule structures on serum albumin binding. All measurement conditions were
thoroughly controlled. Additionally, influence of pH value, dependence on the concentration of
inorganic ions, and reversibility of BSA binding were determined experimentally. Finally, the
data obtained were correlated with various descriptors to gain an insight into the requirements of
successful modeling for serum albumin binding.

Materials and methods

Materials
Bovine serum albumin (essentially fatty acid free) was purchased from Sigma Aldrich (Product
No. A3803) and used without further purification. BSA was chosen because of its good
availability and comparability to the previous publication for neutral compounds.14 Water
purified with a Milli-Q Gradient A10 system from Millipore was used. Methanol (Suprasolv)
was obtained from Merck and acetonitrile (gradient grade) from Sigma Aldrich. Unless
otherwise noted below, all sorption experiments were performed using Hanks’ balanced salt
solution (HBSS, without phenol red and sodium bicarbonate, Sigma Aldrich) buffered with 10
mM tris(hydroxymethyl)aminomethane (Tris) from Carl Roth. After addition of sodium
bicarbonate and Tris, the pH value of HBSS was adjusted to 7.4 using 1 N HCl or NaOH
solution from Merck. The exact salt concentrations of HBSS and a comparison with human
plasma are shown in Table S3, SI. Ammonium acetate, formic acid, orthophosphoric acid, bis(2-
hydroxyethyl)amino-tris(hydroxymethyl)methane (Bis-Tris), sodium bicarbonate, sodium
chloride, sodium sulfate and sodium azide were purchased from Sigma Aldrich, Carl Roth or Merck.

The chemicals used for the binding experiments were different organic acids and bases, or salts of them, all of which have only one ionizable functional group and are more than 99% ionized at pH 7.4. To investigate the influence of different substitutions on the binding constant, a series of benzoic acids, naphthoic acids and sulfonates were chosen for the dataset. More complex compounds (i.e., pesticides and pharmaceuticals) were included, because of their environmental relevance. All test chemicals are listed in Table 1 and had purity of at least 98%. More details on the test chemicals (e.g., CAS number, provider, analytical method used for quantification, chemical structure, pKₐ values and recovery from control experiments) can be found in the Supporting Information Table S1. In this work, weak acids and bases are always denoted with the chemical names of their neutral species (e.g., 4-chlorobenzoic acid) because they are more common than the names for the ionic species (e.g., 4-chlorobenzoate), despite the fact that weak acids and bases in our test solutions are always predominantly in their ionic form and that K_{BSA/w} reported in this work is thus for the ionic species.

Dialysis experiments

Our experimental procedure for the dialysis experiments has been described previously in detail. In short: a custom-made dialysis cell that consists of two half-cells (total volume approx. 10 mL) and dialysis membranes from Spectrum Laboratories (type Spectra/Por 4 RC with a molecular weight cutoff of 12-14 kD) was used. One half-cell of the dialysis unit received 5 mL HBSS buffer and the other half-cell 4.9 mL BSA solution (1-50 g/L). All samples were spiked with 100 µL of a dilution of the test chemical in HBSS, which was prepared from a concentrated stock solution in methanol (final concentration of methanol in the system ≤0.5 vol%), and the
dialysis cells were equilibrated at 37°C. Three to four replicates were prepared. Aliquots of 100 µL were taken from the buffer side of the BSA samples after two and three days (with no significant difference observed between the two time points). The concentration of the test chemicals (C_{free}) was quantified in all samples as described in the instrumental analysis section, C_{BSA} was obtained from the mass balance calculation, and $\log K_{\text{BSA/w}}$ was calculated using eq 2. Test chemicals for which the fraction bound to BSA was less than 20 % were excluded from the dataset. At high concentrations BSA possibly causes a colloid osmotic pressure that leads to a volume shift in the dialysis cell. However, this was not observed in our experiments. In preliminary experiments we also determined the amount of proteins that passes the dialysis membrane using the Bradford assay. Only 0.01 % of the total protein were found to diffuse through the membrane, which is not expected to influence the determination of $K_{\text{BSA/w}}$ in our experiments. Control samples without BSA were also prepared and measured in parallel. If the recovery for a test chemical from the control was consistently below 95 % or above 105 %, the concentration in the BSA samples was corrected according to the recovery. This correction is justified, because a consistent deviation from 100 % recovery was found to result from the first dilution step of the methanolic stock solution in HBSS, which should cause exactly the same error in the dose amounts for BSA and control samples. Test chemicals with recoveries below 90 and above 120 % were excluded from the dataset. The average recovery from the control samples for the remaining test chemicals was 91-117 %. All sorption experiments were performed for individual chemicals and not with mixtures. Additionally, in all experiments the amount of the bound test chemicals was kept well below the amount of BSA (i.e., $\leq 0.1 \text{ mol/mol}$ at equilibrium, see also Table S2, SI), to avoid saturation of the binding sites of BSA. More details on the dialysis experiments are listed in Table S2, SI (e.g., concentration of stock
solutions in methanol, initial water phase and measured equilibrium water phase concentrations
of all test chemicals, concentration of BSA solution used for the dialysis experiments).

Reversibility of BSA binding
To test the reversibility of binding and the mass conservation, the following experiment was
performed for a subset of the test chemicals. Dialysis cells with BSA were prepared as described
above, but additionally with 300 mg/L sodium azide to prevent microbial activity. This was
necessary to extend the experimental time without causing precipitation of BSA. Additional
experiments showed no significant influence of sodium azide on the partitioning of benzoic acid,
2-phenoxyacetic acid and 2-methoxy-1-naphthoic acid to BSA (data not shown). After
equilibrium was established (three days) the buffer-containing half-cell was emptied completely
and 5 mL of fresh buffer were added. Additional three days were given for re-equilibration and
the buffer was sampled again. With both equilibrium buffer concentrations after three and six
days, $\log K_{BSA/w}$ was calculated, assuming the mass conservation. For samples taken after six
days, the removal of test chemical due to clearance of buffer after three days was considered in
the mass balance calculation. If binding to BSA was fully reversible and no mass loss occurred,
the determined $K_{BSA/w}$ after three and six days should be the same. If either (or both) of the
conditions is not fulfilled, $K_{BSA/w}$ calculated for the six days sample should become larger than
that for the three days sample.

Dependence of BSA binding on pH value and salt concentration
The partitioning of IOCs to proteins may be influenced by pH value and salt concentration. In
this study sorption of 2,6-dichlorobenzoic acid to BSA was measured at pH 6, 7 and 8 at a
constant concentration of Cl^- (150 mM). To control the pH value in the experiments, 10 mM Bis-
Tris ($pK_a = 6.5$) were added for solutions at pH 6 and 10 mM Tris ($pK_a = 8.06$) for pH 7 and 8
Salt concentration dependence was investigated by measuring the BSA-water partition coefficient of 2,6-dichlorobenzoic acid at Cl\(^-\) concentrations of 10, 50, 300 and 500 mM (adjusted with NaCl) and at a SO\(_4^{2-}\) concentration of 163 mM (added as Na\(_2\)SO\(_4\); the same ionic strength as 500 mM Cl\(^-\)). These salt solutions contained 10 mM Tris and 10 mM HCl and pH was adjusted to 7 with 0.1 N NaOH solution.

Instrumental analysis

For the majority of the test chemicals an HPLC system from JASCO was used, equipped with either a UV detector (UV-970 M, JASCO) or a fluorescence detector (RF-10AXL, Shimadzu). For chemicals that needed a sensitive quantification method, LC-MS/MS measurements were performed with two different instruments: an Acquity UPLC system from Waters with a Xevo TQ mass spectrometer and an UPLC system from Agilent Technologies (1290 Infinity Series) equipped with a 6400 Triple Quad mass spectrometer. Details on the instrumental analysis are presented in the Supporting information.

Results and discussion

Reversibility tests

The results from the reversibility tests with BSA performed for eight test chemicals are presented in Table S6, SI. No significant difference between the partition coefficients determined after three and six days was found (difference between the mean values was <0.03 log units for all chemicals), indicating that binding to BSA is a fully reversible process and that there was no significant mass loss for the chemicals tested. For all other test chemicals for which we report the partition coefficients in this study, we, therefore, assume that the interaction with BSA is non-covalent and, in principle, reversible. It is reasonable to think that usual sorption of organic
chemicals to BSA is reversible, because, otherwise, serum albumin could not transport the chemical from one place to the other within the body.

Dependence of BSA binding on pH value and salt concentration

Changes in pH can influence the partitioning of IOCs to serum albumin in different ways. First, the speciation of IOCs can change by changing pH, and ionic and neutral species of a chemical possibly have different affinities for the protein. Second, the speciation of ionizable functional groups of the protein is also pH dependent, which alters the overall charge of the protein and can influence the interactions with IOCs. Third, serum albumin changes its conformation depending on the pH of the solution, possibly changing the binding site structure. Salt type and concentration of the medium is another crucial factor that has to be considered, because chloride, for example, is reported to compete with warfarin and fatty acids (both are anionic chemicals) for the high affinity binding sites of serum albumin.

For 2,6-dichlorobenzoic acid the observed pH dependence was relatively small; log $K_{BSA/w}$ is 1.86, 1.82 and 1.72 for pH 6, 7, and 8, respectively. A former study found an increasing, a decreasing, or no clear trend in pH dependence of BSA binding for perfluoroalkyl acids of different chain lengths. These results indicate that changes in pH have different effects on the sorption behavior, depending on the chemicals. In contrast to the relatively small pH dependence observed here, the results for the measurements at different salt concentrations for 2,6-dichlorobenzoic acid show a clear competition effect (Figure S2, SI). An increase of the Cl$^-$ concentration by a factor of 50 decreases $K_{BSA/w}$ by a factor of 17 (i.e., 1.2 log units). Moreover, $K_{BSA/w}$ of 2,6-dichlorobenzoic acid was determined to be 1.8 times higher at 163 mM SO$_4^{2-}$ than at 500 mM Cl$^-$ (i.e., at the same ionic strength), which indicates that the type of competing ion also has an influence on $K_{BSA/w}$.
While further research is clearly needed to fully understand pH and salt dependence of $K_{\text{BSA/w}}$ for IOCs, the results obtained do support the initial statement that pH and salt concentration should be controlled to assure comparability of data. As a consequence, all data discussed in the following sections were measured with a buffer of the same composition, as described in the method section.

BSA-water partition coefficients

BSA-water partition coefficients ($K_{\text{BSA/w}}$) were successfully measured for 45 anionic and 4 cationic organic chemicals. The determined $\log K_{\text{BSA/w}}$ range from 0.97 to 5.27 (Table 1).

Table 1. Determined logarithmic BSA-water partition coefficients ($\log K_{\text{BSA/w}}$) at 37°C (pH 7.4 in HBSS with 10 mM Tris). Data are all for ionic species.

<table>
<thead>
<tr>
<th>Test chemical</th>
<th>$\log K_{\text{BSA/w}}$ [L/kg]</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzoic acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzoic acid</td>
<td>2.23</td>
<td>0.04</td>
</tr>
<tr>
<td>2-chlorobenzoic acid</td>
<td>1.84</td>
<td>0.02</td>
</tr>
<tr>
<td>3-chlorobenzoic acid</td>
<td>3.22</td>
<td>0.02</td>
</tr>
<tr>
<td>4-chlorobenzoic acid</td>
<td>3.21</td>
<td>0.02</td>
</tr>
<tr>
<td>3,4-dichlorobenzoic acid</td>
<td>4.06</td>
<td>0.02</td>
</tr>
<tr>
<td>2,6-dichlorobenzoic acid</td>
<td>1.65</td>
<td>0.02</td>
</tr>
<tr>
<td>4-fluorobenzoic acid</td>
<td>2.84</td>
<td>0.03</td>
</tr>
<tr>
<td>4-nitrobenzoic acid</td>
<td>2.66</td>
<td>0.02</td>
</tr>
<tr>
<td>4-bromobenzoic acid</td>
<td>3.48</td>
<td>0.02</td>
</tr>
<tr>
<td>4-methylbenzoic acid</td>
<td>2.67</td>
<td>0.02</td>
</tr>
<tr>
<td>2-methylbenzoic acid</td>
<td>1.99</td>
<td>0.03</td>
</tr>
<tr>
<td>4-ethylbenzoic acid</td>
<td>3.03</td>
<td>0.04</td>
</tr>
<tr>
<td>4-butylnbenzoic acid</td>
<td>3.73</td>
<td>0.02</td>
</tr>
<tr>
<td>4-hexylbenzoic acid</td>
<td>4.23</td>
<td>0.02</td>
</tr>
<tr>
<td>2,4,6-trimethylbenzoic acid</td>
<td>2.26</td>
<td>0.03</td>
</tr>
<tr>
<td>2-cyclohexylbenzoic acid</td>
<td>3.55</td>
<td>0.04</td>
</tr>
<tr>
<td>Naphthoic acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-naphthoic acid</td>
<td>4.36</td>
<td>0.07</td>
</tr>
<tr>
<td>2-naphthaleneacetic acid</td>
<td>4.77</td>
<td>0.05</td>
</tr>
<tr>
<td>1-naphthoic acid</td>
<td>2.81</td>
<td>0.02</td>
</tr>
<tr>
<td>Substance</td>
<td>$\log K_{\text{BSA/w}}$</td>
<td>Error</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>1-naphthaleneacetic acid</td>
<td>3.43</td>
<td>0.03</td>
</tr>
<tr>
<td>4-fluoro-1-naphthoic acid</td>
<td>3.46</td>
<td>0.01</td>
</tr>
<tr>
<td>1-bromo-2-naphthoic acid</td>
<td>4.02</td>
<td>0.03</td>
</tr>
<tr>
<td>2-methoxy-1-naphthoic acid</td>
<td>2.16</td>
<td>0.01</td>
</tr>
<tr>
<td>2-ethoxy-1-naphthoic acid</td>
<td>2.66</td>
<td>0.02</td>
</tr>
<tr>
<td>3-methoxy-2-naphthoic acid</td>
<td>2.86</td>
<td>0.01</td>
</tr>
<tr>
<td>Phenoxy acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-phenoxyacetic acid</td>
<td>2.53</td>
<td>0.07</td>
</tr>
<tr>
<td>2,4-dichlorophenoxyacetic acid</td>
<td>3.28<sup>a</sup></td>
<td>0.10</td>
</tr>
<tr>
<td>4-(2,4-dichlorophenoxy)butyric acid</td>
<td>4.12</td>
<td>0.03</td>
</tr>
<tr>
<td>2,4,5-trichlorophenoxyacetic acid</td>
<td>3.83</td>
<td>0.02</td>
</tr>
<tr>
<td>mecoprop<sup>b</sup></td>
<td>3.74</td>
<td>0.06</td>
</tr>
<tr>
<td>Arylpropionic acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ketoprofen<sup>b</sup></td>
<td>3.31</td>
<td>0.01</td>
</tr>
<tr>
<td>ibuprofen<sup>b</sup></td>
<td>3.91</td>
<td>0.02</td>
</tr>
<tr>
<td>fenoprofen<sup>b</sup></td>
<td>3.92</td>
<td>0.02</td>
</tr>
<tr>
<td>$\alpha,4$-dimethylphenylacetic acid<sup>b</sup></td>
<td>3.00</td>
<td>0.03</td>
</tr>
<tr>
<td>Phenols</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pentachlorophenol</td>
<td>5.27</td>
<td>0.10</td>
</tr>
<tr>
<td>bromoxylin</td>
<td>5.18</td>
<td>0.06</td>
</tr>
<tr>
<td>Coumarines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>coumachlor</td>
<td>3.41</td>
<td>0.02</td>
</tr>
<tr>
<td>coumafuryl</td>
<td>2.84</td>
<td>0.02</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mefenamic acid</td>
<td>4.36</td>
<td>0.02</td>
</tr>
<tr>
<td>sulcotrione</td>
<td>1.72</td>
<td>0.06</td>
</tr>
<tr>
<td>Sulfonates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-ethylbenzenesulfonate</td>
<td>3.17<sup>a</sup></td>
<td>0.03</td>
</tr>
<tr>
<td>4-n-octylbenzenesulfonate</td>
<td>4.84</td>
<td>0.02</td>
</tr>
<tr>
<td>2,4,6-trimethylbenzenesulfonate</td>
<td>4.23</td>
<td>0.05</td>
</tr>
<tr>
<td>4-bromobenzenesulfonate</td>
<td>3.32</td>
<td>0.04</td>
</tr>
<tr>
<td>naphthalene-2-sulfonate</td>
<td>4.71</td>
<td>0.04</td>
</tr>
<tr>
<td>Cations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S)-(−)-propranolol</td>
<td>1.43</td>
<td>0.05</td>
</tr>
<tr>
<td>alpranolol<sup>b</sup></td>
<td>1.02</td>
<td>0.07</td>
</tr>
<tr>
<td>imipramine</td>
<td>1.58</td>
<td>0.09</td>
</tr>
<tr>
<td>verapamil<sup>b</sup></td>
<td>0.97<sup>a</sup></td>
<td>0.13</td>
</tr>
</tbody>
</table>

^a $\log K_{\text{BSA/w}}$ are taken from our previous work¹⁶

^b Chiral compounds. Because no information on the
enantiomeric composition was available, we assumed the racemic mixture. The organic anions measured in this study tended to show high affinities for BSA. Given that serum albumin is present with a fraction of 2.9 vol%\(^{19}\) and is the dominant sorption phase in blood plasma, the majority of the anions tested (38 out of 45) are expected to be more than 90 % bound to serum albumin in plasma. Even the smallest anion in the dataset (benzoic acid) binds strong enough to perform a binding experiment. In contrast, binding of the tested cations to BSA was often too weak to be measureable (i.e., fraction bound <20 % in our dialysis experiments) and \(K_{\text{BSA/w}}\) was finally only determined for four cationic chemicals. Organic cations that could not be measured because of too weak sorption include serotonin, (S)-(−)-nicotine, dibenzylamine and different quaternary ammonium compounds (e.g., difenzoquat and benzylidimethyloctylammonium). The finding that anions tend to be much stronger bound to serum albumin than cations is in accordance with previous studies,\(^{20}\) although this relationship appears not to be a strict rule, as some cationic drugs have been reported to show similar strong binding as anions to serum albumin.\(^{21}\) Because only four cationic chemicals were successfully measured in this study, the discussions below focus on the partitioning data for anions.

Influences of molecular structure on \(\log K_{\text{BSA/w}}\)

From the dataset presented in Table 1, it can be seen that addition of a CH\(_2\) group or a longer chain to the molecule increases \(K_{\text{BSA/w}}\) by, on average, 0.28-0.62 log units per CH\(_2\) unit (Table S7, SI). For example, a linear increase of \(K_{\text{BSA/w}}\) was measured for a homologous series of 4-alkylbenzoic acids with a slope of 0.31 log units/CH\(_2\) (Figure S1, SI). Similarly, \(K_{\text{BSA/w}}\) increases from 4.36 for 2-naphthoic acid to 4.77 for 2-naphthaleneacetic acid, from 2.81 for 1-naphthoic acid to 3.43 for 1-naphthaleneacetic acid and from 2.16 for 2-methoxy-1-naphthoic acid to 2.66 2-ethoxy-1-naphthoic acid (for more examples, see Table S7, SI).
similar increase of log \(K_{\text{BSA/w}} \) with CH\(_2\) was observed for neutral compounds before (0.35-0.50 log units/CH\(_2\)).\(^{14}\) A consistent increase of a partition coefficient with the addition of CH\(_2\) unit is common for neutral compounds in many systems including solvent-water partition systems in general.\(^{22}\) Thus, in this regard, the observed sorption behavior of IOCs to BSA is generally in line with what we see with neutral compounds (although the observed range of CH\(_2\) influences on log \(K_{\text{BSA/w}} \) for IOCs is somewhat broader than usual for neutral compounds).

An interesting outcome of this work is that, for a series of anionic substituted benzenes and naphthalenes measured in this study, a remarkably high influence of the substitution pattern of the molecules on BSA binding was found. As presented in Figure 1A, data for benzoic acids show that substitution in direct vicinity to the charged carboxylate group lowers the partition coefficient substantially. For example, chlorinated benzoic acids show the following trends: 3-chlorobenzoic acid and 4-chlorobenzoic acid have similar partition coefficients (log \(K_{\text{BSA/w}} \) is 3.22 and 3.21, respectively), while log \(K_{\text{BSA/w}} \) for 2-chlorobenzoic acid is only 1.84 (Figure 1A). For the two constitutional isomers, 3,4-dichlorobenzoic acid and 2,6-dichlorobenzoic acid, a log \(K_{\text{BSA/w}} \) of 4.06 and 1.65 was determined, respectively, which means a difference of more than two orders of magnitude. A similar trend was found for methylated benzoic acids: log \(K_{\text{BSA/w}} \) is 2.67 for 4-methylbenzoic acid, but only 1.99 for 2-methylbenzoic acid. It is also interesting that log \(K_{\text{BSA/w}} \) of 2,4,6-trimethylbenzoic acid is just 2.26, although it has two carbon atoms more than 4-methylbenzoic acid (2.67). These consistent decreases of \(K_{\text{BSA/w}} \) upon ortho-substitutions on benzoic acid suggest steric effects on the BSA binding, e.g., reduced accessibility to binding sites. For the chlorinated benzoic acids, the observed effects of substitution position could partially be non-steric, because strongly electron-withdrawing Cl has various influences on molecular properties of aromatic acids, which are reflected by, e.g., solvent-water partition
coefficients and pK_a of their neutral species. For methylated benzoic acids the effect is probably only steric. To obtain an additional insight, 3D structures of the substituted benzoic acid molecules were optimized using the quantum chemical software Turbomole (Figures S3-S18, SI). From these structures it can be seen that ortho-substituted benzoic acids (i.e. 2-chlorobenzoic acid, 2,6-dichlorobenzoic acid, 2-methylbenzoic acid and 2,4,6-trimethylbenzoic acid) show a twisted carboxylate group, i.e., the two oxygen atoms of the carboxylate are aligned perpendicular to the benzene ring, whereas the other benzoic acids show the parallel conformation. This structural feature could be related to the lower affinities of the vicinal substituted benzoic acids for BSA. Note that the steric effect discussed here was indicated for benzoic acids but not for sulfonates (for further discussion see the last paragraph of this section).

Figure 1. Influence of substitution position on log $K_{BSA/w}$ and observed steric effects; BA - benzoic acid, NA - naphthoic acid, NAA - naphthaleneacetic acid.
Another notable finding is that 1-naphthoic acids consistently have much lower BSA-water partition coefficients than corresponding 2-naphthoic acids (Figure 1B). The determined log $K_{\text{BSA/w}}$ of 1-naphthoic acid is 2.81, while it is 4.36 for 2-naphthoic acid; 1-naphthaleneacetic acid and 2-naphthaleneacetic acid have log $K_{\text{BSA/w}}$ of 3.43 and 4.77, respectively and 2-methoxy-1-naphthoic acid and 3-methoxy-2-naphthoic acid of 2.16 and 2.86, respectively. The difference might be explained by the 3D shape of these chemicals, because 2-naphthoic acids are more linear, whereas the 1-naphthoic acids have a more bulky structure.

Stereoselectivity is often reported for serum albumin in the literature.$^{24-26}$ For chiral drugs binding of the different enantiomers to human serum albumin normally differs only up to a factor of 1.5.24,27 Larger differences in serum albumin binding were found for specific isomers, e.g., the amino acid tryptophan, for which the L chiral form is reported to bind 10 - 100 times more to serum albumin than the D form.25,28,29 By comparison, the high influences of the 3D structure on the partitioning of benzoic and naphthoic acids to BSA that were found in this study are remarkable, considering the generally broad specificity of the albumin binding. In general, organic anions are believed to bind to a hydrophobic pocket of serum albumin with additional electrostatic interactions between the negative charge of the chemical and the positive charge of a lysyl- or arginyl residue.9 Possibly, the accessibility of such a binding site is hampered for some of the chemicals tested in this study due to their 3D shape.

In the dataset, we included four pairs of chemicals that have the same non-ionic substructure but different charged functional groups (i.e., sulfonate vs carboxylate): 4-ethylbenzenesulfonate and 4-ethylbenzoic acid, naphthalene-2-sulfonate and 2-naphthoic acid, 4-bromobenzenesulfonate and 4-bromobenzoic acid, and 2,4,6-trimethylbenzenesulfonate and 2,4,6-trimethylbenzoic acid. For the first three pairs, the type of the charged functional group has
only a minor influence on log $K_{\text{BSA/w}}$ (0.14-0.35 log units). However, a large difference (1.97 log units) was found between 2,4,6-trimethylbenzenesulfonate and 2,4,6-trimethylbenzoic acid, which cannot easily be explained. As already mentioned above, 2,4,6-trimethylbenzoic acid has two methyl substitutions in direct vicinity of the charged group and its $K_{\text{BSA/w}}$ value is even lower than that of benzoic acid most likely due to a steric effect. In contrast, 2,4,6-trimethylbenzenesulfonate appears not to experience such a steric effect, as is indicated by the $K_{\text{BSA/w}}$ value being greater than that of 4-ethylbenzenesulfonate. Corroborating this interpretation, the sulfonate group of 2,4,6-trimethylbenzenesulfonate optimized by Turbomole shows no structural difference compared to 4-ethylbenzenesulfonate (Figure S19, SI).

Comparison with other partition coefficients

As a first step towards developing a predictive model for partitioning of organic ions to serum albumin, we plotted log $K_{\text{BSA/w}}$ determined in this study against various other partition coefficients that can be derived more easily than log $K_{\text{BSA/w}}$ itself (Figures 2 and 3). First, the data are compared with logarithmic octanol-water partition coefficients of the neutral species of the test chemicals (log K_{ow} (neutral)), although we are not hypothesizing that there is a mechanistic relationship between log $K_{\text{BSA/w}}$ and log K_{ow} (neutral). Log K_{ow} (neutral) data are readily available from the literature and many environmental models are based on correlations with log K_{ow} (neutral), although it has been shown that such models are purely on an empirical basis and can be inaccurate even for neutral chemicals. All log K_{ow} values shown in Figure 2 are taken from the EPI-Suite data base (version 4.1) provided by the U.S. Environmental Protection Agency. If no experimental log K_{ow} (neutral) was available, the value calculated from EPISuite was used instead (Table S8, SI). For comparison, BSA binding data for 83 neutral chemicals from Endo et al. are included in Figure 2. For the neutral chemicals, there is a relatively weak
but clear positive trend between $\log K_{\text{BSA/w}}$ and $\log K_{\text{ow}}$ ($R^2 = 0.75$). In contrast, for the organic anions and cations of this study, there is no overall trend ($R^2 = 0.13$ for all anions). The high scatter appears to result from several reasons. First, according to EPI-Suite, sulfonates have extremely small $\log K_{\text{ow}}$ (neutral), except for naphthalene-2-sulfonate, which is the only sulfonate for which an experimental $\log K_{\text{ow}}$ (neutral) was available. The reliability of the $\log K_{\text{ow}}$ (neutral) calculated by EPI-Suite for sulfonates is unclear, because experimental $\log K_{\text{ow}}$ for neutral species of sulfonates are difficult to measure. Second, for the cationic test chemicals, the relationship between $\log K_{\text{BSA/w}}$ (ion) and $\log K_{\text{ow}}$ (neutral) appears to be substantially different from that of anions. Third, while $\log K_{\text{ow}}$ (neutral) captures the increase of $\log K_{\text{BSA/w}}$ by addition of CH_2 increments, the other trends that were found in the dataset for benzoic and naphthoic acids of this study (e.g., influence of substitution position and differences between 1- and 2-naphthoic acids) cannot be depicted with $\log K_{\text{ow}}$ (neutral) (see also Figure S20A, SI).

Figure 2. Comparison of determined $\log K_{\text{BSA/w}}$ (ion) with octanol-water partition coefficients of the neutral species ($\log K_{\text{ow}}$ (neutral)).
We also plotted the experimental log $K_{\text{BSA/w}}$ values of this study against other partition coefficients of the ionic species (Figure 3), expecting a better correlation compared to log K_{ow} (neutral), because these partition coefficients directly reflect physicochemical properties of the ionic species of the test chemicals. For the 45 anions measured in this study, theoretical log K_{ow} of the ionic species (log K_{ow} (ion)) were calculated using the quantum chemically based software COSMOtherm.30 For ionic chemicals, COSMOtherm calculates single-ion partition coefficients at infinite dilution that are inaccessible by experiment (because counter-ions also partition in real systems). While a positive trend does exist, the correlation of measured log $K_{\text{BSA/w}}$ with calculated log K_{ow} (ion) is rather weak ($R^2 = 0.37$, Figure 3A). We also tried other solvents than octanol such as methanol, acetone, and hexadecane, but none of them resulted in a better correlation. Similar to log K_{ow} (neutral), log K_{ow} (ion) only accounts for the increase of log $K_{\text{BSA/w}}$ with the number of CH$_2$ groups, but not at all for the observed differences between 1- and 2-naphthoic acids and the influence of substitution position (Figure S20B in SI). According to COSMOtherm calculations, log K_{ow} (ion) for the structural isomers are rather similar (difference ≤ 0.3 log units). The fact that sulfonates and benzoic acids with the same non-ionic substructure show very similar log $K_{\text{BSA/w}}$ (ion) is captured correctly by log K_{ow} (ion) (predicted difference between benzoic acids and sulfonates 0.08-0.32 log units). However, the large difference between 2,4,6-trimethylbenzenesulfonate and 2,4,6-trimethylbenzoic acid is not predicted by log K_{ow} (ion) (measured difference 1.97 log units, predicted difference only 0.19 log units).
Figure 3. Correlation of determined log $K_{\text{BSA/w}}$ for anions with (A) calculated octanol-water partition coefficients of the ionic species ($\log K_{\text{ow}}$ (ion)) and (B) measured retention factors on a weak anion exchange column ($\log k'$).

Additionally, in Figure 3B the data for anions are compared with measured logarithmic retention factors on a weak anion exchange column ($\log k'$, Luna NH2 column, Phenomenex, unpublished in-house data, see Table S8 in SI). The increase of $\log K_{\text{BSA/w}}$ by addition of CH$_2$ increments is correctly depicted by $\log k'$ and also the observed steric effects are captured better by $\log k'$ (Figure S20C in SI) compared to $\log K_{\text{ow}}$ (both, neutral and ion). Nevertheless, the overall correlation ($R^2 = 0.51$) may still be too unsatisfying to be considered as a predictive model.

Modeling considerations

The findings of this study suggest that conventional modeling approaches like correlation with $\log K_{\text{ow}}$ would fail to accurately predict the partitioning of IOCs to serum albumin. Descriptors that are supposed to directly reflect the properties of the ionic species like calculated $\log K_{\text{ow}}$ of
ionic species and measured retention factors on an ion exchange column do not show a good
correlation with measured log $K_{BSA/w}$ either.

Polyparameter linear free energy relationship (PP-LFER) models as described by Endo et al.14
are only applicable for neutral chemicals. However, Abraham et al. have proposed a PP-LFER
approach that can be used for ions as well.31,32 This PP-LFER model was fitted to the data of this
study, including 82 neutral chemicals from Endo et al14 (a detailed description of the PP-LFER
modeling can be found in the SI). The derived PP-LFER equation gives a better correlation for
log $K_{BSA/w}$ than the other approaches discussed above ($R^2 = 0.70$, RMSE = 0.58 for all ionic
chemicals, Figure 4), but again important trends in the dataset such as the influence of
substitution position and differences between 1- and 2-naphtoic acids are not captured correctly
(Figure S20D, SI). This deficiency of the model is not surprising, because the solute descriptors
used for PP-LFER models incorporate only the volume of the solute, but not the specific 3D
structure.2 Because there may well be unknown structural effects that cause even larger errors,
we do not recommend a general use of the PP-LFER equation derived within this study to predict
sorption of organic ions to serum albumin.
Figure 4. Comparison of experimentally determined BSA-water partition coefficients ($\log K_{BSA/w \, EXP}$) with PP-LFER fitted BSA-water partition coefficients ($\log K_{BSA/w \, PP-LFER}$); solid line denotes the 1:1 line, dotted and dashed lines indicate a deviation of 0.3 and 1 log unit, respectively.

In conclusion, an important reason why the conventional descriptors tested above are inappropriate for modeling serum albumin binding appears to be that they cannot account for the observed steric effects and the influence of the 3D structure. Thus, for a better prediction, a modeling approach that correctly captures the 3D structure effects needs to be applied. There is an ongoing effort in our research group to use 3D quantitative structure activity relationships (3D-QSARs) for modeling serum albumin binding constants, which will be reported soon.

ASSOCIATED CONTENT

Supporting Information. Further information on the test chemicals, instrumental analysis and PP-LFER modeling; 21 additional figures (including 3D structures for selected chemicals) and 9 additional tables. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

* Tel: ++81-6-6605-2763, E-mail: satoshi.endo@urban.eng.osaka-cu.ac.jp

ACKNOWLEDGMENT

We thank Todd Gouin and Richard Cubberley from the Safety & Environmental Assurance Centre (SEAC), Unilever (Colworth, UK) and Nadin Ulrich at the UFZ, Leipzig for facilitating the LC-MS measurements. Special thanks go to Andrea Pfennigsdorff for her assistance in
laboratory work. Satoshi Endo acknowledges the support by the MEXT/JST Tenure Track Promotion Program.

References

