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The B-arylation and -alkenylation of
trifluoromethylacrylic acid with arylboronic acids and alkenes
proceed smoothgl under rhodium(lll) catalysis. The
procedures provide useful synthetic routes from readily
available building brocks to B-aryl-a-
trifluoromethylpropanoic  acid and  5,5,5-trifluoro-1,3-
butadiene derivatives. Some of obtained butadienes exhibit
strong fluorescence in the solid state. Keywords: rhodium
catalyst; arylation, alkenylation, organofluorine compound

Organofluorine compounds are of importance in
pharmaceutical, agrochemical, and polymer industries as well
as in material sciences.! Trifluoromethyl group is the most
fundamental fluorine-containing unit, which can be seen in a
wide range of fine chemicals. The introduction of
trifluoromethyl group into organic molecules? can influence
the electron distribution and lipophilicity of parent molecules
to enhance biological and physical properties.> Among such
trifluoromethyl-substituted molecules, B-aryl-o-
trifluoromethylpropanoic  acids have attracted attention
because of their biological activities and utilities as important
synthetic intermediates in fine chemicals producing
processes.* For preparing the class of compounds,
nucleophilic and electrophilic trifluoromethylation reactions
of a-activated carbonyl compounds have been developed. For
example, Hu and co-workers reported copper-mediated
nucleophilic trifluoromethylation of o-diazo esters with
TMSCF3.5 As an electrophilic reagent, Poisson, Besset, and
co-workers used Togni’s reagent in their NHC carbene-
catalyzed trifluoromethylation of a-chloroaldehydes.® In these
precedents, however, reactive substrates and/or reagents have
to be employed for preparing desired B-aryl-o-
trifluoromethylpropanoic acids efficiently. An alternative is to
utilize stable, readily available building blocks containing a
trifluoromethyl group.” We focused attention on commercially
available a-trifluoromethylacrylic acid. The catalytic coupling
of this substrate can provide straightforward synthetic routes
to trifluoromethyl-containing compounds. In the context of
our continuous studies of rhodium(lIl)-catalyzed coupling
reactions,® we found that o-trifluoromethylacrylic acid
undergoes B-arylation upon treatment with arylboronic acids
under rhodium(Ill) catalysis to produce B-aryl-o-
trifluoromethylpropanoic acids® (Scheme 1). This type of 1,4-
conjugate addition of arylboron reagents toward o,f-
unsaturated carboxylic acids and related compounds has been
conducted mainly under palladium(ll)-, rhodium(l)-, or
ruthenium(ll) catalysis.’® In contrast, the rhodium(ll)-
catalyzed version has been less explored. In addition, the
rhodium(l1l)-catalyzed oxidative coupling of this building
block with alkenes was also examined. Fortunately, we
succeeded in finding that the B-alkenylation proceeds through

C-H bond cleavage and decarboxylation!?*® to produce
5,5,5-trifluoro-1,3-butadiene derivatives. These new findings
are described herein.
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In an initial attempt, phenylboronic acid (1a) (1 mmol)
was treated with o-trifluoromethylacrylic acid (2) (0.5 mmol)
in the presence of [Cp*Rh(MeCN)s][SbF¢]. (0.02 mmol, 4
mol% Rh), Ag,O (1 mmol), and PivOH (0.5 mmol) under
argon in t-AmOH (3 mL) at 50 °C for 20 h. After subsequent
methyl-esterification using methyl iodide (2.5 mmol) and
K2COs (1.5 mmol) in DMF at rt, methyl 2-benzyl-3,3,3-
trifluoropropanate (3a) was formed as a 1,4-conjugate
addition product in 72% yield (entry 1 in Table S1). Under
optimal conditions using [Cp*RhClI;]. (0.01 mmol), AgSbF
(0.1 mmol), and Ag-O (1 mmol), 3a was produced in 95%
yield (entry 15 in Table S1).2* The volatility of ester 3a made
the posttreatment difficult. Fortunately, the corresponding
acid, 2-benzyl-3,3,3-trifluoropropanoic acid (3a’), could be
obtained in 93% isolated yield by avoidance of the methyl-
esterification procedure (Table 1). It was confirmed that the
present reaction can be readily scaled up. Thus, 3a was
obtained in 75% isolated yield (813 mg) from la (10 mmol)
and 2 (5 mmol) (entry 16 in Table S1).

Under the optimized conditions (entry 15 in Table S1),
we next examined the reactions of variously substituted
phenylboronic acids 1 with 2. (Table 1). Electron-
withdrawing (-Cl (2b), -Br (2c), -CO-Et (2d), and -CN (2e))
and -donating groups (-Me (2f) and -OMe (2g)) were tolerated
to give the corresponding B-phenyl-a.-
trifluoromethylpropanoic acids 3b’-g’ in 51-92% vyields. In
cases using 4-biphenyl- (2h) and 2-naphthylboronic acids (2i),
products 3’ were found to be sparingly soluble in common
organic solvents. Therefore, they were treated with Mel and
K.CO; to make posttreatment easy. Thus, methyl esters 3h
and 3i were obtained in 73 and 50% isolated Yyields,
respectively.



Table 1. Reaction of Arylboronic Acids 1 with a-
Trifluoromethylacrylic Acid (2)?

[Cp*RNCly], / AgSbFg
CF3 Ag,0 CF3
Ar—B(OH),  + Ar
}\COZH +AMOH cozH
1 2

product yield (%)

3
Cl
CO,H CO,H

3a’ 93% 3b’ 84% 3¢’ 88%
EtO,C
COzH COH
3d’ 92% 3¢’ 51%
Me
COzH COH

3’ 84% 39’ 75%

CAE
CO,Me

3h 73%" 3i 50%P

2 Reaction conditions: 1 (1 mmol), 2 (0.5 mmol), [Cp*RhCl,], (0.01 mmol), AgSbFg
(0.1 mmol), AgoO (1 mmol), in #AmOH (3 mL) under Ar at 50 °C for 20 h, unless
otherwise noted. P Isolated as a methyl ester after treatment with Mel (2.5 mmol),
K>COj3 (1.5 mmol) and DMF (2 mL) at rt for 2 h.

In contrast to trifluoromethylacrylic acid 2, methacrylic
acid (4) underwent Mizoroki-Heck type reaction upon
treatment with 1a under the present conditions (Scheme 2).
After the methyl-esterification, methyl (E)-2-methyl-3-
phenylacrylate (5) was formed selectively, albeit with a low
yield. Unexpectedly, no 1,4-conjugate addition product was
detected at all.
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Scheme 2.

A plausible mechanism for the 1,4-conjugate addition of
arylboronic acid 1 to o-trifluoromethylacrylic acid (2) is
shown in Scheme 3. First, a Cp*-rhodium(Ill) species
undergoes transmetalation with 1 to form an arylrhodium
intermediate A. Then, A may undergo the insertion of 2 into
its Ar—Rh bond to form a rhodium enolate intermediate B.
Only a C-bonded tautomer is depicted in the scheme for
clarity. The carboxylic group in B seems to be more acidic for
the electron-withdrawing effect of its CF; group compared to
that in the corresponding intermediate in the reaction of

2

methacrylic acid (4). Therefore, the carboxylate moiety can
readily coordinate to the rhodium center to form B’, which
may show resistance to undergoing B-hydrogen elimination.®
Finally, hydrolysis of B or B’ appears to take place to
selectively produce 3 and to regenerate an active Cp*-
rhodium(l11) species. It is also possible that the hydrolysis
step proceeds more smoothly in the presence of acidic 2,
compared to that in the case with 4.
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Next, the alkenylation of a-trifluoromethylacrylic acid
(2) was examined. Previously, we reported that methacrylic
acid (4) undergoes p-alkenylation upon treatment with
alkenes such as styrene in the presence of Cp*-rhodium(lll)
catalyst and cupper salt oxidant (Scheme 4).** Under similar
conditions, 2 reacted with styrene (6a) accompanied by
decarboxylation'® to produce ((1E,3E)-5,5,5-trifluoropenta-
1,3-dien-1-yl)benzene (7a) selectively, albeit with a low yield
(entry 1 in Table S2). In contrast to the case with 4, by-
products possessing a carboxylic group could not be detected.
The vyield of 7a was enhanced to 46% by using AgOAc as
oxidant in NMP (Table 2, entry 11 in Table S2). In most cases,
small amounts (<5%) of geometric isomer(s) were detected. It
should be noted that trifluoromethyl-capped phenylbutadiene
derivatives are of interest for their physical properties and
their reactivity.l” 4-Methyl (6b) and -chlorostyrenes (6c) also
coupled with 2 under similar conditions to give 7b and 7c in
moderate yields. The reactions of 4-vinyl-1,1"-biphenyl (6d)
and 2-vinylnaphthalene (6e) could be conducted in a similar
manner to yield 7d and 7e. Butyl (6f) and Octyl acrylates (6g)
also underwent decarboxylative coupling with 2 to produce
the corresponding (2E,4E)-6,6,6-trifluorohexa-2,4-dienoates
7f and 7g. In the cases using acrylates, the use of twice
amount of rhodium catalyst gave better results.
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Table 2. Reaction of a-Trifluoromethylacrylic Acid (2)
with Alkenes 62

[Cp*RhCl5],
CF; AgOAc
R/\ R/\/\/CFa
COH NMP
6 2 7

product yield (%)

@A\A\/CFS @/\A\/Cﬁ /@/\/\/CFa
Me Cl

7a 46% 7b 40% 7c 41%

!\\CF3 l! X_CF3
O 7d 34% 7e 40%

(n-Bu)0,c~ X CFs

F
(nCaHy7) 0,7 N

7f 40%P 79 39%°

@ Reaction conditions: 6 (2 mmol), 2 (0.5 mmol), [Cp*RhCl;], (0.005 mmol),
AgOAc (1 mmol) in NMP (2.5 mL) under Ar at 120 °C for 6 h, unless otherwise
noted. ® [Cp*RhCl,], (0.01 mmol) was used.

Finally, we conducted preliminary investigations on the
properties of prepared trifluoromethyl-capped butadienes.
Compounds 7d and 7e showed strong fluorescence in the
solid state at 383 and 395 nm (excited at 310 nm) (Figure 1).
The quantum efficiency of the solid-state fluorescence was
determined to be absolute values of 0.30 and 0.29,
respectively.

Normalized Intensity
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Figure 1. Normalized photoluminescence spectra (excited at
310 nm) of 7d (dotted line) and 7e (solid line) in solid state.

In summary, we have demonstrated that the B-arylation
of readily available a-trifluoromethylacrylic acid can be
achieved upon treatment with arylboronic acids in the
presence of a rhodium(lIl) catalyst and a silver salt additive.
Obtained B-aryl-a-trifluoromethylpropanoic acids are of
interest because of their biological activities and utilities as
important synthetic intermediates in fine chemicals producing
processes. Moreover, it has been found that «-
trifluoromethylacrylic acid also undergoes pB-alkenylation
under similar conditions accompanied by decarboxylation to

produce trifluoromethyl-capped butadienes. Some of the latter
products exhibit intense fluorescence in the solid state.
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