Nomograms predicting extra- and early intrahepatic recurrence after hepatic resection of hepatocellular carcinoma

Hiroji Shinkawa, Shogo Tanaka, Shigekazu Takemura, Ryosuke Amano, Kenjiro Kimura, Masahiko Kinoshita, Kanae Takahashi, Shuichiro Matsuzaki, Shoji Kubo

<table>
<thead>
<tr>
<th>Citation</th>
<th>Surgery. 169(4): 922-928</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue Date</td>
<td>2021-04</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>Author</td>
</tr>
<tr>
<td>Supplementary data</td>
<td>Supplementary Table is available online at https://doi.org/10.1016/j.surg.2020.10.012.</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2020 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 License. http://creativecommons.org/licenses/by-nc-nd/4.0/. This is the accepted manuscript version. The formal published version is available at https://doi.org/10.1016/j.surg.2020.10.012</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1016/j.surg.2020.10.012</td>
</tr>
</tbody>
</table>

Self-Archiving by Author(s)
Placed on: Osaka City University Repository

Original Research

Nomograms Predicting Extra- and Early Intrahepatic Recurrence After Hepatic Resection of Hepatocellular Carcinoma

Hiroji Shinkawa, MD, PhD;1 Shogo Tanaka, MD, PhD;1 Shigekazu Takemura, MD, PhD;1 Ryosuke Amano, MD, PhD;1 Kenjiro Kimura, MD, PhD;1 Masahiko Kinoshita, MD, PhD;1 Kanae Takahashi, MPH;2 Shuichiro Matsuzaki;3 and Shoji Kubo, MD, PhD1

1Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
2Department of Medical Statistics, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
3Osaka City University Faculty of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan

Corresponding author: Hiroji Shinkawa, MD
Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
Tel: +81-6-6645-3841
Fax: +81-6-6646-6057
E-mail: m1297198@msic.med.osaka-cu.ac.jp

Running head: Nomogram for extra- and early intrahepatic HCC recurrence
Abbreviations

HCC = Hepatocellular carcinoma
EHR = Extrahepatic recurrence
IHR = Intrahepatic recurrence
AFP = α-fetoprotein
C-index = The concordance index
Article Summary

We have developed reliable nomograms to predict extra- and early intrahepatic recurrence of hepatocellular carcinoma after hepatic resection. The importance of this is that these nomograms are useful for the early diagnosis of extra- and early intrahepatic recurrences and could assist surgeons in decision-making for clinical management of hepatocellular carcinoma patients.
Abstract

Background: Extrahepatic recurrence (EHR) and early intrahepatic recurrence (IHR) of hepatocellular carcinoma (HCC) after hepatic resection are indicative of poor prognoses. We aimed to develop nomograms to predict EHR and early IHR after hepatic resection.

Methods: The participants of this study were 1206 patients who underwent initial and curative hepatic resection for HCC. Multivariate logistic regression analyses using the Akaike information criterion were used to construct nomograms to predict EHR and early IHR (within one year of surgery) at the first recurrence sites after hepatic resection. Performance of each nomogram was evaluated by calibration plots with bootstrapping.

Results: EHR was identified in 95 patients (7.9%) and early IHR in 296 patients (24.5%). Three predictive factors α-fetoprotein >200 ng/mL, tumor size ($3–5$ cm or >5 cm vs. ≤ 3 cm), and image-diagnosed venous invasion by computed tomography were adopted in the final model of the EHR nomogram with a concordance index of 0.75. Tumor size and two additional predictors, i.e., multiple tumors and image-diagnosed portal invasion, were adopted in the final model of the early IHR nomogram with a concordance index of 0.67. The calibration plots showed good agreement between the nomogram predictions of EHR and early IHR and the actual observations of EHR and early IHR, respectively.

Conclusions: We have developed reliable nomograms to predict EHR and early IHR of HCC after hepatic resection. These are useful for the diagnostic prediction of EHR and early IHR and could guide the surgeon’s selection of treatment strategies for HCC patients.
INTRODUCTION

Hepatocellular carcinoma (HCC) is the fifth most common malignancy and a major cause of cancer-related death in the world.1 Although hepatic resection has been accepted as a curative treatment for patients with HCC, the long-term outcome remains unsatisfactory because of the high incidence of postoperative recurrence.2,3-5 The recurrence rate of HCC reaches more than 75% at five years after hepatic resection.2 HCC recurrences are categorized into intrahepatic recurrences (IHR) and extrahepatic recurrences (EHR). Of these, IHR have been identified in more than 80% of HCC recurrences.6 The types of IHR is considered to be divided into early and late recurrences. Early IHR is mainly derived from intrahepatic metastasis from primary cancer, 7 and is associated with a poor survival. 8 Meanwhile, EHR is identified in 14\%–25.5\% of HCC recurrent cases.9-11 Because treatment options for EHR have been limited, especially for diffuse EHRs, the survival outcome of patients with EHR is reportedly very poor.9-11 However, the management of EHR has recently been improved, and the survival benefit from locoregional therapy, including metastasectomy and radiation therapy, has been reported in selected patients.12, 13 Systemic therapy using molecular targeted agents or immune checkpoint inhibitors also provides long-term survival in HCC patients with extrahepatic spread.14 Although a phase III clinical trial showed that sorafenib, the first molecular targeted agent, provided no survival benefit in an adjuvant therapy setting,15 several molecular targeted agents and immune checkpoint inhibitors have recently been applied as adjuvant or neoadjuvant therapies.16 Considering the high risk of EHR after hepatic resection, early detection of EHR and the identification of patients who may benefit from adjuvant or neoadjuvant therapy are very important.
Previous studies demonstrated individualized factors predicting EHR17-19 and early IHR20, 21 of HCC after hepatic resection, such as tumor size, microvascular invasion, multiple tumors, and serum α-fetoprotein (AFP) level. Because early IHR is mainly derived from intrahepatic metastasis through hematogenous tumor spread,7 early IHR, like EHR, provides a significant measure of judgement for the therapeutic effects of hepatic resection in HCC. However, there have been few reports assessing the incidence probability of EHR and early IHR after hepatic resection and the probability weight of individual predictive factors for EHR and early IHR. Nomograms have been accepted as reliable tools to assess for oncological prognosis. By developing a statistical predictive model, a nomogram gives rise to a numerical probability of a clinical event, such as cancer recurrence and survival time.22 It is expected that nomograms predicting EHR and early IHR are useful to predict the therapeutic effect of hepatic resection for HCC.

In the current study, we aimed to develop nomograms predicting EHR and early IHR after hepatic resection in patients with HCC.

\textbf{METHODS}

\textbf{Patients}

We identified 1206 patients who underwent initial and curative hepatic resection for HCC at Osaka City University Hospital from June 1990 to December 2018. Curative hepatic resection was defined as the histological absence of tumor cells along the parenchymal transection line. Exposure of only the tumor capsule with a surgical margin of 0 mm is defined as negative surgical margin.23 24 However, patients with tumor recurrence connected to the cut surface of the remnant liver were excluded because this recurrence situation is considered as regrowth of residual tumor which was
part of the original tumor at surgery. None of the patients in this study received neoadjuvant or adjuvant therapy. This study was conducted in accordance with the guidelines of the Ethics Committee of our institution (No.3815) and the Declaration of Helsinki.

Hepatic Resection and Patient Follow-Up

Hepatic resection was carried out according to an algorithm consisting of the presence or absence of ascites, the serum total bilirubin level, and the results of the indocyanine green retention test. Patients were followed up once every 3 months after surgery. At each follow-up visit, the routine examination included the measurement of HCC-specific tumor markers. In addition, ultrasonography, dynamic computed tomography (CT), or magnetic resonance imaging was conducted. The diagnostic criteria for EHRs were follows: (1) raised tumor markers that had decline to normal range after hepatic resection, (2) evidence of new extrahepatic lesions not identified preoperatively, and (3) histological diagnosis of extrahepatic lesions in patients undergoing metastasectomy for EHR. The nomogram endpoints were the development of EHR for the first recurrence site during the follow-up time after surgery. Extrahepatic metastasis diagnosed later than IHR was excluded from the EHR as an endpoint.

Early IHR is mainly derived from intrahepatic metastasis through hematogenous tumor spread. To focus on intrahepatic recurrence from primary cancer almost exclusively, the nomogram endpoints for early IHR were the development of IHR for the first recurrence site within one year after surgery.

Preoperative CT findings
In this study, pathological findings pertaining to tumor progression (including microscopic vascular invasion and tumor differentiation) were not included because decision-making for clinical management of HCC, such as neoadjuvant therapy and surgical indication, are determined by preoperative factors. Several preoperative CT findings that are predictive of microscopic portal and venous invasion, and poor differentiation were included in this analysis as follows: (1) image-diagnosed portal invasion and venous invasion\(^{27}\) based on the guidelines of the Liver Cancer Study Group of Japan\(^{28}\); (2) image-diagnosed non-smooth tumor margin (simple nodular type with extranodular growth and confluent multinodular type).\(^{29}\)

Histology

The histological classifications of the tumor and the degree of the background liver were evaluated based on the guidelines of the Liver Cancer Study Group of Japan.\(^{28}\) The grade (severity of active hepatitis) and stage (degree of hepatic fibrosis) of noncancerous hepatic tissue were determined by scoring based on the histological activity index.\(^{30, 31}\)

Statistical Analysis

Background characteristics were summarized as the median and interquartile range for continuous variables and frequency and percentage for categorical variables. The presumptive nomogram prognosticators were selected based on previous study results \(^{27, 29, 32-34}\) or our own clinical experience and included the age, sex, Child–Pugh class (A or B), alanine aminotransferase activity, tumor size (≤ 3 cm, 3–5 cm, or > 5 cm), multiple tumors, image-diagnosed portal invasion, image-diagnosed venous invasion,
image-diagnosed non-smooth tumor margin, liver cirrhosis, AFP ($\leq 200 \text{ ng/mL}$ or $> 200 \text{ ng/mL}$), and intraoperative blood loss. Final models were selected using the dredge function with the Akaike information criterion in the MuMIn package of R software, version 4.0.0 (R Foundation for Statistical Computing, Vienna, Austria), which automatically calculates Akaike information criterion values for all possible combinations of fixed predictive factors. Based on the results of the multivariate logistic regression analyses for the final models, the nomograms were developed using the rms package of R software.35 The performance of the nomograms was evaluated using the concordance index (C-index). Bootstrap validation was performed with 150 resamples to validate and calibrate the prediction models. The bootstrap bias-corrected C-indices were reported as measures of the predictive performance of the models.

RESULTS

Background characteristics for all 1206 patients are shown in Table 1. The median follow-up time was 49.9 months (interquartile range, 23.7–88.6 months). IHR was identified in 750 patients (62.1%), and 296 patients (24.5%) had early IHR (within one year after surgery), whereas 95 patients (7.9%) experienced EHR during the study period. Supplementary Table 1 shows the prevalence of the sites of EHR.

Table 2 shows the results of the multivariate logistic regression analysis for the final model predicting EHR. Three predictive factors, i.e., AFP $>200 \text{ ng/mL}$, tumor size (3–5 cm or $> 5 \text{ cm}$ vs. $\leq 3 \text{ cm}$), and image-diagnosed venous invasion were adopted in the final model for the construction of the nomogram. The established nomogram is shown in Figure 1. By summing the points from each factor, locating the total points on the scale, and drawing a straight line down to the end point scales, the nomogram
indicates the incidence probability of EHR after hepatic resection.

Figure 2 shows the calibration plot using bootstrapping. The X-axis indicates the predicted EHR probability estimated by the nomogram, and the Y-axis demonstrates the actual rates of EHR. The actual EHR probability corresponded closely to the prediction of the nomogram. The calibration plot showed good agreement between the prediction by nomogram and actual observation. In terms of discriminative ability, the C-index was 0.75 (Fig. 3). The bootstrap validation with 150 resamples resulted in a C-index of 0.74. The bias-corrected C-index closely matched the initial C-index.

Table 3 shows the results of the multivariate logistic regression analysis for the final model predicting early IHR. Four predictive factors, i.e., tumor size (3–5 cm or > 5 cm vs. ≤ 3 cm), tumor exposure, multiple tumors, and image-diagnosed portal invasion were adopted in the final model for the construction of the nomogram. The established nomogram is shown in Figure 4.

Figure 5 shows the calibration plot using bootstrapping. The actual early IHR probability corresponded closely to the prediction of the nomogram. The calibration plot showed good agreement between the nomogram prediction and the actual observation. In terms of discriminative ability for early IHR, the C-index was 0.67 (Fig. 6). The bootstrap validation with 150 resamples resulted in a C-index of 0.67. The bias-corrected C-index closely matched the initial C-index.

DISCUSSION

In the present study, we developed a nomogram for EHR after hepatic resection of HCC that contains four independent predictive factors including AFP >200 ng/mL, tumor size (3–5 cm or > 5 cm vs. ≤ 3 cm), and image-diagnosed venous invasion. This nomogram
was shown to have high accuracy in the prediction of EHR with a C-index of 0.75. Tumor size and three additional predictors, i.e., tumor exposure, multiple tumors, and image-diagnosed portal invasion were adopted in the final model of the early IHR nomogram with a concordance index of 0.67. The nomograms were further validated internally using the bootstrapping technique. While, to the best of our knowledge, no previous reports have assessed the predictive value of nomograms for EHR and early IHR after hepatic resection, since the nomograms include major preoperative indicators of tumor progression and aggressiveness based on imaging findings and serum tumor biomarker, these provide an accurate prediction of EHR and early IHR. Tumor size and hepatic venous invasion are tumor staging parameters and reportedly correlated with EHR of HCC after hepatic resection. The main presumed mechanism of extrahepatic tumor metastasis is systemic hematogenous tumor dissemination. Tumor size is considered with the increased risk of potentially hematogeneous tumor spread. Carr et al reported that tumor size was associated with a proportional increase in the extrahepatic metastasis rate. In the current study, image-diagnosed venous invasion was accorded the highest weighted score of 100 points and tumor size greater than 5 cm was accorded the score of approximately 60 points; therefore, tumor size and image-diagnosed venous invasion may be the main predictors of EHR of HCC. Neither multiple tumors nor image-diagnosed portal invasion were adopted as predictors in the final model for the EHR nomogram. This may be explained by considering the metastatic mechanisms with affinity for intrahepatic recurrence. Portal invasion is considered to be associated with intrahepatic metastasis from the original tumor and thus increases the risk of IHR. Likewise, the presence of multiple tumor
nodules would include intrahepatic metastasis and multicentric development and, as such, is considered a risk factor of IHR derived from both intrahepatic micrometastasis and multicentric carcinogenesis. Therefore, in this study, image-diagnosed portal invasion and multiple tumor were enrolled as predictors in the final model for the nomogram predicting early IHR.

AFP is the most widely accepted and used serum biomarker in HCC. Studies have demonstrated the association of AFP level with tumor growth and progression of HCC including vascular invasion and poor cellular differentiation. Overexpression of AFP promotes invasion and distant metastasis by upregulating the expression of metastasis-related proteins. AFP is reportedly associated with distant metastasis of HCC and is recognized as a predictor of recurrence after liver transplantation for HCC. Incorporation of serum tumor biomarkers may help improve the accuracy of the current nomogram for EHR.

This nomogram is based on parameters that are routinely assessed during preoperative workup. Thus, it is a convenient tool for assessing the risk of EHR and establishing individualized case management plans after hepatic resection. Indications of high risk may induce doctors to increase the frequency of patient visits, and to include extrahepatic metastasis work-up including a chest CT, brain CT, and whole-body bone scintigraphy in addition to routine abdominal imaging tests in order to can detect EHR at an early stage during the follow-up period after surgery. Surgical resection of EHR in selected patients, such as those with one or two isolated extrahepatic metastases, well-controlled IHR, and preserved liver function can offer improved long-term survival. More frequent follow-up visits with shortened intervals between examinations may therefore lead to a timely therapeutic strategy regarding surgical resection. Hence,
the current nomogram may provide prognostic benefits to the patients at high risk of EHR, through more frequent follow-up visits accompanied by extrahepatic metastasis work-ups. Furthermore, a nomogram predicting EHR would allow clinicians to identify patients with promising survival prospects as potential candidates for adjuvant therapy or neoadjuvant therapy. In an adjuvant therapy setting, the results of a phase III clinical trial of sorafenib showed no survival benefits for patients undergoing curative treatment for HCC.15 No effective therapies currently exist in adjuvant or neoadjuvant settings.14 However, several immune checkpoint inhibitors, including nivolumab and pembrolizumab, have recently demonstrated durable response effects for advanced HCC patients.14 Many trials of immune checkpoint inhibitors are ongoing in the adjuvant or neoadjuvant setting.49 Moreover, several combination therapies with immune checkpoint inhibitors and molecular targeted agents have shown synergistic effects.14 Therefore, the current nomogram for EHR could be used to guide decisions around adjuvant or neoadjuvant therapy.

This nomogram shows an incidence probability of EHR of up to 70%. In other words, there is up to 30% chance that no EHR will occur after surgery. Hence, the nomogram for EHR should not be used to decide surgical indication in HCC patients. Instead, hepatic resection should be adopted as a locoregional therapy for patients at high risk for EHR. However, the nomogram predicting early IHR within one year after surgery indicated the incidence probability of early IHR up to 80%. It incorporated four predictive factors, i.e., tumor exposure, tumor size, multiple tumors, and image-diagnosed portal invasion. In this study, patients with tumor recurrence connected to the cut surface of the remnant liver were excluded. In a previous study, IHR due to tumor exposure was shown to be derived from residual micrometastasis
surrounding the original tumor. Furthermore, early IHR within one year after surgery is likely attributable to preexisting intrahepatic hematogenous tumor spread at diagnosis. Therefore, patients at high risk for both EHR and early IHR in the current nomograms would be at a potentially advanced stage of HCC. For such patients, hepatic resection alone would not offer a sufficient therapeutic effect. Thus, by combining the risk assessments for EHR and early IHR obtained from the current nomograms, physicians may devise alternate treatment strategies. Survival benefits for patients at high risk for both EHR and early IHR by the current nomograms might be provided through neoadjuvant therapy using molecular targeted agents and/or immune checkpoint inhibitors, which are proven to be effective in advanced HCC.

Intraoperative blood loss was reported as a predictor of HCC recurrence. However, in this study, intraoperative blood loss was not adopted in the final model for the nomograms predicting EHR and early IHR. The lack of association between intraoperative blood loss and recurrence may be attributable to improvement in surgical instruments (including hemostasis devices) and perioperative management during the study period of 28 years. The characteristics of patients with large amount of intraoperative blood loss may have changed over the years. Along with the improvement of perioperative management, the clinical impact of blood loss on the body after surgery may also have changed over the years. Therefore, the long study period may have obscured the prognostic impact of blood loss on postoperative recurrence.

Among the preoperative CT-image-diagnosed variables, image-diagnosed non-smooth tumor margin was not adopted for either EHR or early IHR. In a previous study, non-smooth tumor margins (simple nodular type with extranodular growth and
confluent multinodular type) were found to correlate with pathological vascular invasion. In addition, contiguous multinodular type lesions showed a correlation with poor differentiation. However, image-diagnosed venous invasion and portal invasion were only adopted in the final model for EHR and early IHR, respectively. This indicated that image-diagnosed venous invasion and portal invasion would have a more significant predictive ability for EHR and early IHR, respectively, than image-diagnosed non-smooth tumor margin.

The current study has several limitations. First, this study had a retrospective design and enrolled a rather small number of patients with EHR. Second, the study period was approximately 28 years. However, the long study period in a single institution might contribute to establish a consistent and robust nomogram based on detailed clinical data. Third, although the proposed nomograms had good C-indices of 0.75 and 0.67, their performance was not validated by using external data sets. However, calibration plots for internal validation using bootstrapping showed favorable performance with a closely matched bias-corrected C-indices.

In conclusion, we have developed reliable nomograms to predict EHR and early IHR of HCC after hepatic resection. These are useful for the diagnostic prediction of EHR and early IHR and could guide the surgeon’s selection of treatment strategies for HCC patients.

Acknowledgments

This work was supported by Health, Labor and Welfare Policy Research Grants from the Ministry of Health, Labor, and Welfare of Japan (Policy Research for Hepatitis Measures [H30-Kansei-Shitei-003]).
All authors are willing to make their data, analytic methods, and study materials available to other researchers.

COI/Disclosures: The authors declare no proprietary or commercial interests in any product mentioned or concept discussed in this article.
REFERENCES

Table 1. Patient characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Patients (n = 1206)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (male/female)</td>
<td>949/257</td>
</tr>
<tr>
<td>Age (years)(^a)</td>
<td>67 (60, 72)</td>
</tr>
<tr>
<td>ALT (IU/L)(^a)</td>
<td>41 (25, 70)</td>
</tr>
<tr>
<td>AFP (ng/mL)</td>
<td></td>
</tr>
<tr>
<td>>20</td>
<td>524 (43.4%)</td>
</tr>
<tr>
<td>≤20</td>
<td>682 (56.6%)</td>
</tr>
<tr>
<td>Child–Pugh class A</td>
<td>1136 (94.2%)</td>
</tr>
<tr>
<td>Tumor size (cm)(^a)</td>
<td>3.0 (2.0, 4.5)</td>
</tr>
<tr>
<td>Tumor size:</td>
<td></td>
</tr>
<tr>
<td>≤3 cm</td>
<td>625 (51.8%)</td>
</tr>
<tr>
<td>3–5 cm</td>
<td>354 (29.4%)</td>
</tr>
<tr>
<td>>5 cm</td>
<td>227 (18.8%)</td>
</tr>
<tr>
<td>Multiple tumors</td>
<td>362 (30.0%)</td>
</tr>
<tr>
<td>Image-diagnosed portal invasion</td>
<td>358 (29.7%)</td>
</tr>
<tr>
<td>Image-diagnosed venous invasion</td>
<td>47 (3.9%)</td>
</tr>
<tr>
<td>Image-diagnosed non-smooth tumor margin</td>
<td>302 (25.0%)</td>
</tr>
<tr>
<td>Liver cirrhosis</td>
<td>438 (36.3%)</td>
</tr>
<tr>
<td>Intraoperative blood loss (mL)(^a)</td>
<td>550 (190, 1271.3)</td>
</tr>
<tr>
<td>Tumor exposure</td>
<td>57 (4.7%)</td>
</tr>
</tbody>
</table>

AFP, α-fetoprotein; ALT, alanine aminotransferase

\(^a\) Median with interquartile range.
Table 2 Final model of the multivariate logistic regression analysis for extrahepatic recurrence

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coefficient</th>
<th>OR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFP >200 ng/mL</td>
<td>0.478</td>
<td>1.61</td>
<td>0.98–2.65</td>
<td>0.059</td>
</tr>
<tr>
<td>Tumor size (vs ≤3 cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3–5 cm</td>
<td>1.05</td>
<td>2.86</td>
<td>1.58–5.16</td>
<td><0.001</td>
</tr>
<tr>
<td>>5 cm</td>
<td>1.552</td>
<td>4.72</td>
<td>2.57–8.66</td>
<td><0.001</td>
</tr>
<tr>
<td>Image-diagnosed venous invasion</td>
<td>2.448</td>
<td>11.56</td>
<td>4.95–27.03</td>
<td><0.001</td>
</tr>
</tbody>
</table>

AFP, α-fetoprotein; OR, odds ratio; CI, confidence interval
Table 3 Final model of the multivariate logistic regression analysis for intrahepatic recurrence within one year after surgery

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>OR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor exposure</td>
<td>0.485</td>
<td>1.63</td>
<td>0.90–2.94</td>
<td>0.11</td>
</tr>
<tr>
<td>Tumor size (vs ≤3 cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3–5 cm</td>
<td>0.322</td>
<td>1.38</td>
<td>1.00–1.90</td>
<td>0.047</td>
</tr>
<tr>
<td>>5 cm</td>
<td>0.640</td>
<td>1.90</td>
<td>1.33–2.71</td>
<td>0.026</td>
</tr>
<tr>
<td>Image-diagnosed portal invasion</td>
<td>1.020</td>
<td>2.77</td>
<td>1.38–5.59</td>
<td>0.0004</td>
</tr>
<tr>
<td>Multiple tumor</td>
<td>0.943</td>
<td>2.57</td>
<td>1.94–3.40</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

OR, odds ratio CI; confidence interval
Figure legends

Figure 1. Nomogram predicting extrahepatic recurrence of hepatocellular carcinoma after hepatic resection. AFP, α-fetoprotein.
Fig. 1

Points

AFP (ng/mL)

≤200

>200

Tumor size (cm)

≤3

3-5

>5

Image-diagnosed venous invasion

Yes

No

Total points

Linear predictor

Risk of extrahepatic recurrence
Figure 2. Model accuracy is visualized by comparing predicted versus actual probabilities of extrahepatic recurrence, showing the apparent predictive ability and bias collection for overfitting. The relative prevalence of probability levels is indicated by the vertical lines at the top of the plot.
Figure 3. The receiver operating characteristic plot based on the final multivariate model for extrahepatic recurrence demonstrated adequate predictive discrimination (area under the curve, 0.75).
Fig. 3
Figure 4. Nomogram predicting intrahepatic recurrence of hepatocellular carcinoma within one year after hepatic resection.
Fig. 4

Points

Tumor exposure
- yes
- no

Multiple tumor
- Yes
- No

Tumor size (cm)
- 3-5
- \leq 3
- > 5

Image-diagnosed portal invasion
- Yes
- No

Total points

Linear predictor

Risk of early intrahepatic recurrence
Figure 5. Model accuracy is visualized by comparing predicted versus actual probabilities of intrahepatic recurrence within one year after surgery, showing the apparent predictive ability and bias collection for overfitting. The relative prevalence of probability levels is indicated by the vertical lines at the top of the plot.
Fig. 5

The graph compares actual probabilities against predicted probabilities for different models:

- **Apparent**
- **Bias-corrected**
- **Ideal**

The x-axis represents the predicted probability, while the y-axis represents the actual probability. The graph illustrates the performance of each model against the ideal scenario.
Figure 6. The receiver operating characteristic plot based on the final multivariate model for intrahepatic recurrence within one year after surgery demonstrating adequate predictive discrimination (area under the curve, 0.67).
Fig. 6
<table>
<thead>
<tr>
<th>Site of recurrence</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>33</td>
</tr>
<tr>
<td>Bone</td>
<td>30</td>
</tr>
<tr>
<td>Peritoneum</td>
<td>16</td>
</tr>
<tr>
<td>Adrenal gland</td>
<td>10</td>
</tr>
<tr>
<td>Lymph node</td>
<td>8</td>
</tr>
<tr>
<td>Brain</td>
<td>4</td>
</tr>
<tr>
<td>Abdominal wall</td>
<td>2</td>
</tr>
</tbody>
</table>

aIncluding duplicates.