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Abstract

We define a Nash bargaining solution (NBS) for partition function games (PFGs).

Based on a PFG, we define an extensive game (EG), which is a propose-respond

sequential game where the first rejecter of a proposal exits from the game with a

positive probability. We show that the NBS is supported as the expected payoff

profile of any stationary subgame perfect equilibrium (SSPE) of the EG such that

in any subgame, the coalition of all active players immediately forms. We provide

a necessary and sufficient condition for such an SSPE to exist. We also present an

example in which delay of agreements occurs.
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1 Introduction

When we regard coalition formation as a bargaining problem (BP), one natural

disagreement situation is that if a player disagrees, every player would stand alone.

In this situation, each player’s threat payoff is her payoff when every player stands

alone. Another plausible disagreement situation is that if a player disagrees (or

deviates from the agreement), the other players would remain to cooperate and she

would be isolated. In this situation, each player’s threat payoff is her payoff when

she is isolated. When there is no externality in coalition formation, that is, when

coalition formation is represented by a characteristic function game (CFG) (N, v),

both situations generate the same threat point (v ({i}))i∈N .

However, if there may be externalities in coalition formation, that is, when

coalition formation is represented by a partition function game (PFG) (N,V ),

the above two situations may generate different threat points. In the situation in

which every player stands alone in disagreement, player i’s disagreement results in

coalition structure {{j} | j ∈ N}, her threat payoff is V ({i} , {{j} | j ∈ N}), and
thus, the threat point is (V ({i} , {{j} | j ∈ N}))i∈N . In the situation in which

each disagreer is isolated, player i’s disagreement results in coalition structure

{{i} , N \ {i}}, her threat payoff is V ({i} , {{i} , N \ {i}}), and thus, the threat

point is (V ({i} , {{i} , N \ {i}}))i∈N . Therefore, in these situations, we define the

Nash bargaining solutions (NBSs) of the PFG as the NBSs of the BP such that play-

ers split the worth of the grand coalition under the threat points (V ({i} , {{j} | j ∈ N}))i∈N
and (V ({i} , N \ {i}))i∈N , respectively. We refer to the former and latter as the

fine NBS (fNBS) of PFGs and coarse NBS (cNBS) of PFGs, respectively. The

cNBS is newly defined by this work.

There are several remarks on the NBS of PFGs. First, the entries of threat point

(V ({i} , {{i} , N \ {i}}))i∈N are not consistent because for any distinct i, j ∈ N ,

coalition structures {{i} , N \ {i}} and {{j} , N \ {j}} do not coexist. However,

this inconsistency is reasonable because the players’ disagreements and the coali-

tion structures by the disagreements are hypothetical and they do not actually

disagree. Another rationale for the inconsistency to be reasonable is to interpret

the threat point as the tuple of players’ outside options, which do not have to be

consistent. Secondly, if positive externalities are strong, the cNBS of PFG does not

exist because
∑

i∈N V ({i} , {{i} , N \ {i}}) > V (N, {N}). Thirdly, if there is no

externality, the cNBS and fNBS of PFGs coincide with the NBS of CFGs that are

naturally reduced from the PFGs.

According to Gomes (2005), the fNBS of a PFG is supported as the expected

payoff profile of a stationary subgame perfect equilibrium (SSPE) of an extensive

game (EG).1 However, the cNBS has not been given any noncooperative foundation.

1 Okada (2010) investigates EGs based on strategic games. He shows that the strategic-game coun-
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Our paper will give the cNBS of PFGs a noncooperative foundation. On the

basis of a PFG, we define an EG, a propose-respond sequential bargaining game in

which the first rejecter of a proposal exits from the game with a positive probability

(rejecter-exit partial breakdown). We show that in the limit as the discount factor

tends to unity, the expected payoff profile of any full-coalition SSPE (any SSPE

such that in any subgame, the coalition of all active players immediately forms)

coincides with the cNBS. We also provide a necessary and sufficient condition for

a full-coalition SSPE to exist.

We also address delay of agreements. Okada (1996) shows that in his random-

proposer model, no SSPE involves delay of agreements, that is, in any SSPE, any

player’s SSPE proposal is accepted by all responders. This result holds even under

externalities. Gomes (2005) and Okada (2010) showed no delay of agreements in

their random-proposer models. Not surprisingly, in our model, if the probability

of partial breakdown is zero, no SSPE involves delay. However, if the probability

is positive, the delay may occur. We present an example in which there exists an

SSPE where a player’s proposal in the SSPE is rejected by some player.

The fNBS and cNBS are also defined by the following two-step approach: first,

define a CFG based on the PFG; secondly, let the NBS of the CFG be the NBS

of the PFG. For the fNBS (cNBS, resp.), in the first step, CFG (N, v) based on

PFG (N,V ) is defined as for any S ∈ 2N \ {∅}, v (S) = V (S, {S} ∪ π), where π

is the finest (coarsest, resp.) partition of N \ S, that is, π = {{i} | i ∈ N \ S}
(π = {N \ S | i ∈ N \ S},2 resp.). We refer to this as the fine way (coarse way,

resp.). The approach to define CFGs from PFGs is used to define the Shapley

value and core of PFGs. de Clippel and Serrano (2008) and McQuillin (2009)

axiomatize the Shapley values of PFGs defined by the fine and coarse ways and

call them the externality-free Shapley value and the extended, generalized Shapley

value, respectively. They point out that the externality-free Shapley value and the

extended, generalized Shapley value are supported as equilibrium payoff profiles in

EGs in Hart and Mas-Colell (1996) and Gul (1989), respectively. Hafalir (2007)

defines cores of PFGs by the fine and coarse ways and calls them the core with

singleton expectations and the core with merging expectations, respectively.

In the standard bargaining problem, the disagreement point does not depend on

who disagrees (anonymous disagreement). On the other hand, in the present paper,

the disagreement situation may depend on who disagrees (nonanonymous disagree-

ment). Several papers consider BPs with nonanonymous disagreements. Kıbrıs and

Tapkı (2010) investigate BPs with nonanonymous disagreements in a cooperative

approach. In Kıbrıs and Tapkı (2010), each player’s disagreement determines an

allocation in disagreement. On the other hand, in the cNBS of our paper, player i’s

terpart to the fNBS of PFGs is noncooperatively supported.
2 If S ̸= N , {N \ S | i ∈ N \ S} = {N \ S}, and otherwise, {N \ S | i ∈ N \ S} = ∅.
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disagreement determines her payoff and the worth of coalition of the other players

but does not determine allocation among the other players, which does not matter

in defining the cNBS. Corominas-Bosch (2000) considers a noncooperative bargain-

ing game with nonanonymous disagreements. However, in the model, the number

of players is two, and thus, coalition formation is not considered.

A feature of our EGs is the rejecter-exit partial breakdown, in which if play-

ers fail to agree, the first rejecter exits from the game with a certain probabil-

ity. After player i exits from the game by the partial breakdown in the first

round, the other players form coalition N \ {i} in the full-coalition SSPE, coali-

tion structure {{i} , N \ {i}} is realized, and player i then obtains a payoff of

V ({i} , {{i} , N \ {i}}). This is behind the fact that the expected payoff profile of

any full-coalition SSPE in the limit is equal to the cNBS. Miyakawa (2008), Calvo

(2008) and Hart and Mas-Colell (1996) consider partial breakdowns. In Miyakawa

(2008), a responder is randomly selected and exits from the game. In Calvo (2008),

a player is randomly selected and exits from the game. In Hart and Mas-Colell

(1996), the proposer exits from the game. In their models, there is no externality

in coalition formation. On the other hand, papers studying coalitional bargaining

with externalities have not considered partial breakdown (e.g., Bloch (1996) and

Ray and Vohra (1999)).

The remainder of the paper is organized as follows: Section 2 defines NBSs of

PFGs; Section 3 presents an EG based on a PFG; Section 4 shows that the cNBS is

supported by the expected payoff profile of any efficient SSPE in the limit; Section 5

provides a necessary and sufficient condition that there exists an SSPE in which all

active players cooperate immediately; Section 6 addresses the delay of agreements in

the EG; Section 7 considers mergers of firms in Cournot and Bertrand competitions

as applications; and Section 8 concludes the paper. The proofs of all propositions

are given in the Appendix.

2 Nash bargaining solution

For any function f and any x in the domain of f , let fx be the image of x under f ,

that is, fx := f (x). For any set N , a partition of N is π such that π ̸∋ ∅, S ∩T = ∅
for any distinct S, T ∈ π and

∪
π = N .3 For any nonempty set N , let ΠN be the set

of partitions of N . For any partition π of any nonempty set, for any i ∈
∪

π, let [i]π
be the equivalence class of i by π. For any nonempty set N and any S ∈ 2N \ {∅},
let πN

S (πN
S , resp.) be {S} ∪ π, where π is the finest (coarsest, resp.) partition of

N \ S, that is, π := {{i} | i ∈ N \ S} (π := {N \ S | i ∈ N \ S} = {N \ S} \ {∅},
resp.).

3 According to this definition, the empty set is a unique partition of the empty set.
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A bargaining problem (BP) is a triple (N,B, d) such that N is a nonempty finite

set, B ⊂ RN and d ∈ RN . For any BP (N,B, d), a Nash bargaining solution (NBS)

of (N,B, d) is a solution of maxx∈B
∏

i∈N (xi − di) s.t. x ≥ d. A characteristic

function game (CFG) is a pair (N, v) such that N is a nonempty finite set and v

is a function from 2N \ {∅} to R. For any CFG (N, v), a Nash bargaining solution

(NBS) of (N, v) is an NBS of BP
(
N,
{
x ∈ RN |

∑
i∈N xi ≤ vN

}
,
(
v{i}
)
i∈N

)
. For

any nonempty finite set N , let CN :=
{
(S, π) ∈ 2N ×ΠN | S ∈ π

}
. A partition

function game (PFG) is a pair (N,V ) such that N is a nonempty finite set and V

is a function from CN to R. For any function V from CN to R for some nonempty

finite set N , let vV (vV , resp.) be the function from 2N \ {∅} to R such that for

any S ∈ 2N \ {∅}, vVS = V(S,πN
S )

(vVS = V(S,πN
S )

, resp.).

Definition 1. For any PFG (N,V ), a fine Nash bargaining solution (fNBS) (coarse

Nash bargaining solution (cNBS), resp.) of (N,V ) is an NBS of CFG
(
N, vV

)
(
(
N, vV

)
, resp.).

Behind the fNBS, there is the situation in which if any player disagrees, each

player would stand alone. Behind the cNBS, there is the situation in which if a

player disagrees, the other players would remain to cooperate and she would be

isolated.

Since for any distinct i, j ∈ N , coalition structures {{i} , N \ {i}} and {{j} , N \ {j}}
do not coexist, the entries of threat point

(
V({i},{{i},N\{i}})

)
i∈N are not consistent.

However, this inconsistency is reasonable because the players’ disagreements and

the coalition structures by the disagreements are hypothetical and they do not ac-

tually disagree. Also, it is reasonable because we can interpret the threat point as

the tuple of players’ outside options, which do not have to be consistent.

Remark 1. There exists an fNBS (cNBS, resp.) if and only if
∑

i∈N V(
{i},πN

{i}

) ≤

V(N,{N}) (
∑

i∈N V(
{i},πN

{i}

) ≤ V(N,{N}), resp.). If the grand coalition is efficient, that

is, for any π ∈ ΠN , V(N,{N}) ≥
∑

S∈π V(S,π), then an fNBS exists, but a cNBS does

not necessarily exist.

For any function v from 2N \{∅} to R for some nonempty finite set N , let xv be

the function from N to R such that for any i ∈ N , xvi =
vN−

∑
j∈N v{j}
|N | + v{i}. For

any function V from CN to R for some nonempty finite set N , let xV := xv
V
and

xV := xv
V
.

Remark 2. If there exists an fNBS (cNBS, resp.), it is unique and is given by xV

(xV , resp.).
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3 Extensive games

In the following sections, fix a PFG (N,V ). For any (δ, p) ∈ [0, 1)× [0, 1], define an

extensive game G (δ, p) as follows. A state is π ∈
∪

S∈2N ΠS . π represents a coalition

structure of inactive players. For any state π, let Aπ = N \
∪

π. Aπ represents

the set of active players. Each active player i owns coalition {i}. In a round with

state π with Aπ ̸= ∅, bargaining proceeds as follows. Player i ∈ Aπ is selected with

probability 1
|Aπ | . Player i offers a proposal (S, x) such that i ∈ S ∈ 2A

π
, x ∈ RS

and
∑

j∈S xj = 0 (the proposal means that player i offers monetary term xj for

player j’s resource). Each player j ∈ S \ {i} announces her acceptance or rejection

of the proposal according to a predetermined order until a responder rejects it or

all responders accept it. If all responders accept it, the state is updated to π ∪ {S}
(the proposer exits from the game with owning coalition S and all the responders

exit with no owning coalition). Otherwise, the state remains π (the activity of

players and the ownership of coalitions do not change) with probability p and is

updated to π ∪ {{j}} (the responder j exits from the game with owning coalition

{j}) with probability 1 − p, where j is the rejecter of the proposal. In a round

with state π with Aπ = ∅, no bargaining occurs, and the state remains π. In each

case, the game proceeds to a new round with the updated state. The game starts

from a round with state ∅. In the game, there are four types of players: active

players, players who became inactive by rejecting proposals, players who became

inactive by their proposals being accepted and players who became inactive by

accepting proposals. The first type of player owns her singleton coalition; the

second, her singleton coalition; the third, the coalition in the accepted proposal;

and the fourth, no coalition. For any complete history h, player i’s payoff is defined

as follows. For any t ∈ N,4 let ρt be the state in the end of the tth round in

h and πt := ρt ∪
{
{i} | i ∈ Aρt

}
. Let

(
Rt
)
t∈Z+

be the sequence such that R0 =

{{i} | i ∈ N}; for any t ∈ N, Rt = Rt−1 \ (S \ {i}) if player i’s proposal with

coalition S is accepted by all responders in the tth round in h and Rt = Rt−1 if

the proposal is rejected by some responder in h. For any t ∈ N and any i ∈ N , let

xti be the transfer to player i in the tth round in h. Then, player i’s payoff in h is∑
t∈N δt−1

(
(1− δ)1i∈RtV([i]πt ,πt) + xti

)
.

Definition 2. A strategy profile s is a stationary subgame perfect equilibrium

(SSPE) if s is a subgame perfect equilibrium, and in s, in any round with the

same state, players take the same actions.

Definition 3. A strategy profile is a full-coalition strategy profile if in the strategy

profile, in every subgame starting with state π ̸= ∅, coalition Aπ is immediately

formed.

4 In this paper, N ̸∋ 0.
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For any state π with Aπ ̸= ∅, let V π be the function from CAπ
to R such that

for any (S, ρ) ∈ CAπ
, V π

(S,ρ) = V(S,ρ∪π). A subgame of (N,V ) is (Aπ, V π) such that

π is a state with Aπ ̸= ∅. If in any subgame (M,U) of (N,V ), the grand coalition

is efficient, that is, U(M,{M}) ≥
∑

S∈π U(S,π) for any π ∈ ΠM and this inequality

strictly holds for π = {{i} | i ∈ M}, then, for any (δ, p) ∈ [0, 1)× [0, 1], full-coalition

strategy profiles coincide with subgame-efficient strategy profiles, that is, strategy

profiles that are Pareto efficient in any subgame of G (δ, p). Subgame-efficiency

is defined by Okada (1996). Hafalir (2007) shows that if (N,V ) is convex, that

is, for any subgame (M,U) of (N,V ) and any S, T ∈ 2M \ {∅} with S ∪ T =

M , U(S∪T,{S∪T}) + U(S∩T,{S∩T,S\T,T\S}) ≥ U(S,{S,T\S}) + U(T,{T,S\T}), then in any

subgame of (N,V ), the grand coalition is efficient.

For any state π, let vπ := vV
π
and vπ := vV

π
.5 For any state π, let xπ := xV

π

and xπ := xV
π
.6

4 Support for Nash bargaining solution

We show that any full-coalition SSPE brings the same expected payoff profile in any

subgame starting with the same state, and we explicitly characterize the expected

payoff profile. By this characterization, the limit of the expected payoff profile of

any full-coalition SSPE of G (δ, p) as δ tends to unity is proved to be the cNBS,

and the expected payoff profile of any full-coalition SSPE of G (δ, 1) is proved to be

the fNBS.

Theorem 1. Let (δ, p) ∈ [0, 1) × [0, 1]. Let s be a full-coalition SSPE of G (δ, p).

Then, for any state π, for any i ∈ Aπ, player i’s expected payoff of s in the subgame

of G (δ, p) starting with state π is 1−δ
1−pδx

π
i + (1−p)δ

1−pδ xπi .

Corollary 1. If there exists a cNBS of (N,V ), for any p ∈ [0, 1), the limit of the

expected payoff profile of any full-coalition SSPE of G (δ, p) as δ tends to unity is

equal to the cNBS. If there exists an fNBS of (N,V ), for any δ ∈ [0, 1), the expected

payoff profile of any full-coalition SSPE of G (δ, 1) is equal to the fNBS.

Suppose that δ is sufficiently close to unity. Then, the following argument

approximately holds. In the first round, by rejection, responder i is excluded from

the society with probability 1 − p, and in the next round, the coalition of the

other players forms in any full-coalition SSPE and responder i obtains a payoff of

5 By definition, for any state π and any S ∈ 2A
π \ {∅}, vπS = V(S,πAπ

S ∪π) and vπS = V(S,πAπ

S ∪π).

6 By definition, for any state π and any i ∈ Aπ, xπ
i =

V(Aπ,{Aπ}∪π)−
∑

j∈Aπ V
({j},πAπ

{j}∪π)
|Aπ| + V(

{i},πAπ

{i}∪π
)

and xπ
i =

V(Aπ,{Aπ}∪π)−
∑

j∈Aπ V
({j},πAπ

{j}∪π)
|Aπ| + V(

{i},πAπ

{i}∪π
).
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V({i},N\{i}) = vV{i}. Thus, the threat for player i in the first round is vV{i}. In the first

round, in any full-coalition SSPE, all players cooperate and share V(N,{N}) = vVN .

Therefore, the expected payoff profile of any full-coalition SSPE is the cNBS.

Suppose that p = 1. In the first round, by rejection, responder i obtains an

instant payoff of (1− δ)V({i},{{j}|j∈N}) = (1− δ) vV{i}. Thus, the threat for player

i is vV{i}. In the first round, in any full-coalition SSPE, all players cooperate and

share V(N,{N}) = vVN . Therefore, the expected payoff profile of any full-coalition

SSPE is the fNBS.

5 Conditions for full coalition formation

We provide a necessary and sufficient condition for a full-coalition SSPE to exist.

Theorem 2. Let (δ, p) ∈ [0, 1)× [0, 1]. Then, there exists a full-coalition SSPE of

G (δ, p) if and only if for any state π with Aπ ̸= ∅ and any S ∈ 2A
π \ {∅},

vπAπ −
∑

k∈Aπ

(1−δ)vπ{k}+δ(1−p)vπ{k}
1−δp

|Aπ|
≥

(1− δ) vπS + δvπS −
∑

k∈S
(1−δ)vπ{k}+δ(1−p)vπ{k}

1−δp

δp |S|+ (1− δp) |Aπ|
,

(1)

and for any state π with |Aπ| ≥ 2 and any distinct i, j ∈ Aπ,

vπAπ −
∑
k∈Aπ

(1− δ) vπ{k} + δ (1− p) vπ{k}

1− δp
+

δ (1− p)

1− δp
vπ{i}

≥ δ (1− p)

1− δp

v
π∪{{j}}
Aπ\{j} −

∑
k∈Aπ\{j}

(1−δ)v
π∪{{j}}
{k} +δ(1−p)v

π∪{{j}}
{k}

1−δp

|A|π − 1

+
δ (1− p)

1− δp

(1− δ) v
π∪{{j}}
{i} + δ (1− p) v

π∪{{j}}
{i}

1− δp
. (2)

Corollary 2. If for some p̄ ∈ [0, 1), for any p ∈ [p̄, 1), for some δ̄ ∈ [0, 1), for any

δ ∈
[
δ̄, 1
)
, there exists a full-coalition SSPE of G (δ, p), then for any state π with

Aπ ̸= ∅ and any S ∈ 2A
π \ {∅},

vπAπ −
∑

k∈Aπ vπ{k}

|Aπ|
≥

vπS −
∑

k∈S vπ{k}

|S|
, (3)

and for any state π with |Aπ| ≥ 2 and any distinct i, j ∈ Aπ,

vπAπ −
∑
k∈Aπ

vπ{k} + vπ{i} ≥
v
π∪{{j}}
Aπ\{j} −

∑
k∈Aπ\{j} v

π∪{{j}}
{k}

|Aπ| − 1
+ v

π∪{{j}}
{i} . (4)

If the system of inequalities above strictly holds, then for some p̄ ∈ [0, 1), for any
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p ∈ [p̄, 1), for some δ̄ ∈ [0, 1), for any δ ∈
[
δ̄, 1
)
, there exists a full-coalition SSPE

of G (δ, p). If for some δ̄ ∈ [0, 1), for any δ ∈
[
δ̄, 1
)
, there exists a full-coalition

SSPE of G (δ, 1), then for any state π with Aπ ̸= ∅ and any S ∈ 2A
π \ {∅},

vπAπ −
∑

k∈Aπ vπ{k}

|Aπ|
≥

vπS −
∑

k∈S vπ{k}

|S|
. (5)

If the system of inequalities above strictly holds, then for some δ̄ ∈ [0, 1), for any

δ ∈
[
δ̄, 1
)
, there exists a full-coalition SSPE of G (δ, 1).

(3) is a condition for any player to offer a proposal with the full coalition in

any round with state π. (4) is a condition for any player to offer a proposal to be

accepted in any round with state π. (5) is a condition for any player to offer a

proposal with the full coalition to be accepted in any round with state π.

Remark 3. For any S ∈ 2A
π \ {∅}, (3) ((5), resp.) holds if and only if the NBS of

(Aπ, vπ) ((Aπ, vπ), resp.) is in the core of (Aπ, vπ).7

Remark 4. By (3) with |S| = 1, if for some p̄ ∈ [0, 1), for any p ∈ [p̄, 1), for some

δ̄ ∈ [0, 1), for any δ ∈
[
δ̄, 1
)
, there exists a full-coalition SSPE of G (δ, p), a cNBS

of (N, v) exists, and thus, by Corollary 1, the limit of the expected payoff profile of

the full-coalition SSPE is equal to the cNBS.

The sketch of the proof of the first sentence of Corollary 2 is as follows. Suppose

that for sufficiently large p, for sufficiently large δ, there exists a full-coalition

SSPE s of G (δ, p). Take a sufficiently large p. Take a sufficiently large δ. Then,

the following argument approximately holds. For any state π and any i ∈ Aπ,

let uπi be player i’s expected payoff of s in the subgame with state π. By her

rejection, player j’s continuation payoff of her rejection is (1− p) vπ{i} + puπi ≈ ui.

In full-coalition SSPE s, since player i offers a proposal with the full coalition to

be accepted, she obtains a payoff of vπAπ −
∑

j∈Aπ\{i}

(
(1− p) vπ{j} + puπj

)
≈ vπAπ −∑

j∈Aπ\{i} u
π
j . If she deviates to offering a proposal with coalition S to be accepted,

in full-coalition SSPE s, Aπ \ S forms in the next round. Thus, by the deviation,

she can obtain vπS −
∑

j∈S\{i} u
π
j . Thus, vπAπ −

∑
j∈Aπ\{i} u

π
j ≥ vπS −

∑
j∈S\{i} u

π
j ,

that is, vπAπ −
∑

j∈Aπ uπj ≥ vπS−
∑

j∈S uπj . Note that since s is a full-coalition SSPE,∑
j∈Aπ uπj = vπAπ . Then, vπS ≥

∑
j∈S uπj . Note that S is arbitrary and by Theorem

1, the expected payoff profile is the NBS for (Aπ, vπ). Thus, the NBS for (Aπ, vπ) is

in the core of (Aπ, vπ). If player i deviates to offering a proposal to be rejected by

player j, the state is updated to state π∪{{j}} with probability 1−p and it remains

π with probability p. Thus, by the deviation, she can obtain (1− p)u
π∪{{j}}
i +puπi .

Thus, vπAπ −
∑

j∈Aπ\{i}

(
(1− p) vπ{j} + puπj

)
≥ (1− p)u

π∪{{j}}
i +puπi , that is, v

π
Aπ −

7 Suppose that π = ∅. Then, for any S ∈ 2A
π \ {∅}, (3) ((5), resp.) holds if and only if the cNBS

(fNBS, resp.) of (N,V ) is in the core with merging expectations of (N,V ), which is defined by Hafalir
(2007).
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p
∑

j∈Aπ uπj − (1− p)
∑

j∈Aπ\{i} v
π
{j} ≥ (1− p)u

π∪{{j}}
i . Note that since s is a full-

coalition SSPE,
∑

j∈Aπ uπj = vπAπ . Then, vπAπ −
∑

j∈Aπ\{i} v
π
{j} ≥ u

π∪{{j}}
i . Note

that by Theorem 1, u
π∪{j}
i is player i’s share in the NBS for

(
Aπ \ {j} , vπ∪{{j}}

)
.

Then, (4) holds.

6 Delay

Okada (1996), Gomes (2005) and Okada (2010) showed that in their random-

proposer coalitional bargaining games, if the grand coalition is efficient, any SSPE

involves no delay. Not surprisingly, this result holds in our model if the probability

of rejecter-exit partial breakdown is zero, which is formally shown in Proposition

1.

Proposition 1. Let δ ∈ [0, 1). Suppose that for any subgame (M,U) of (N,V )

and any π ∈ ΠM , U(M,{M}) ≥
∑

S∈π U(S,π) and the strict inequality holds for π =

{{j} | j ∈ M}. Then, in any SSPE s of G (δ, 1), any proposal in s is accepted by

all responders.

If the probability of rejecter-exit partial breakdown is positive, even if the bar-

gaining protocol is the random-proposer one and the supposition of Proposition 1

holds, the delay can occur. In the following example, the delay occurs.

Example 1. Suppose that N = {1, 2, 3}. Suppose that V({i},{{j}|j∈N}) = 0,

V({1},{{i},N\{1}}) = 0, V({i},{{i},N\{i}}) = 1
2 for any i ∈ {2, 3}, V(S,{S,N\S}) = 1

2

for any S ∈ 2N with |S| = 2, and V(N,{N}) = 1. Let δ ∈
(
4
5 , 1
)
. Let x be the

function from RN × R to RN such that for any (u, p) ∈ RN × R and i ∈ N ,

xi (u, p) = δpui + 1i∈{2,3}δ (1− p)
1

2
.

Let g be the function from RN × R to R{(i,S)∈N×2N |i∈S∨S=∅} such that for any

(u, p) ∈ RN × R, i ∈ N and S ∈ 2N with S ∈ i,8

g(i,S) (u, p) =
|S| − 1

2
−

∑
j∈S\{i}

xj (u, p)

g(i,∅) (u, p) = δpui + (1− p) δ
1

4
.

8 In this example, for any X, Y , I, f : X → Y I , x ∈ X and i ∈ I, let fi (x) denote the image of i
under “the image of x under f”, that is, fi (x) := (f (x)) (i).
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Let f be the function from RN × R to RN such that for any (u, p) ∈ RN × R,

f1 (u, p) = u1 −
g(1,∅) (u, p) + 2x1 (u, p)

3
(6)

f2 (u, p) = u2 −
g(2,N) (u, p) + 2x2 (u, p)

3
(7)

f3 (u, p) = u3 −
g(3,N) (u, p) +

(
δpu3 + δ (1− p) 1

4

)
+ x3 (u, p)

3
(8)

Let ū be the element of RN such that ū1 = 1
12δ, ū2 = 1

3 + 1
6δ and ū3 = 1

3 + 1
12δ.

Then, f (ū, 0) = 0. The Jacobian matrix of u 7→ f (u, p) at (ū, 0) is the identity

matrix and thus is invertible. Therefore, by the implicit function theorem, there

exists a neighborhood D of 0 and a continuous function u from D to RN such

that for any p ∈ D, f (u (p) , p) = 0. Note that since 4
5 < δ < 1, g(1,∅) (u (0) , 0) −

g(1,S) (u (0) , 0) > 0 and for any i ∈ {2, 3} and S ∈ 2N such that i ∈ S ̸= N

or S = ∅, g(i,N) (u (0) , 0) − g(i,S) (u (0) , 0) > 0. Then, since g is a continuous

function, there exists a neighborhood E of 0 with E ⊆ D such that for any p ∈ E,

g(1,∅) (u (p) , p) − g(1,S) (u (p) , p) > 0 and for any i ∈ {2, 3} and S ∈ 2N such that

i ∈ S ̸= N or S = ∅, g(i,N) (u (p) , p) − g(i,S) (u (p) , p) > 0. Let p ∈ E. Let

s be the strategy profile in G (p, δ) defined as follows. In a round with state ∅,
player 1 proposes ({1, 2} , y) with y2 = x2 (u (p) , p) − 1; any proposer i ∈ {2, 3}
proposes (N, y) with yj = xj (u (p) , p) for any j ∈ N \ {i}; the last responder i

accepts a proposal (S, y) if and only if yi ≥ xi (u (p) , p); another responder accepts

a proposal (S, y) if and only if M = ∅ and yi ≥ xi (u (p) , p), or M ̸= ∅ and

δpuj (p) + δ (1− p) 1
4 ≥ xi (u (p) , p), where M is the set of successors of j who

reject the proposal. In a round with state π such that |Aπ| = 2, proposer i proposes

(Aπ, y) such that yj = δp1
4 for any j ∈ Aπ \ {i}; responder j accepts a proposal

(S, x) if and only if yj ≥ δp1
4 . Then, player 1’s proposal in s is rejected by player

2 in s, and the other players’ proposals in s are accepted by all responders in s.

Thus, the expected payoff of s is given by the second terms of right hand sides

of equations (6)–(8) at u = u (p). Note that f (u (p) , p) = 0. Thus, the expected

payoff profile is u (p). Hence, the responding actions in s are optimal. Proposer 1’s

payoff of s is g(1,∅) (u (p) , p), and her payoff of any one-stage deviation is less than

or equal to max
{
g(1,S) | 1 ∈ S ∈ 2N

}
. Note that since p ∈ E, g(1,∅) (u (p) , p) >

max
{
g(1,S) | 1 ∈ S ∈ 2N

}
. Then, proposer 1’s proposal in s is optimal. Let i ∈

{2, 3}. Proposer i’s payoff of s is g(i,N) (u (p) , p), and her payoff of any one-stage

deviation is less than or equal to max
{
g(i,S) | i ∈ S ∈ 2N \ {N} ∨ S = ∅

}
. Note

that since p ∈ E, g(i,N) (u (p) , p) > max
{
g(i,S) | i ∈ S ∈ 2N \ {N} ∨ S = ∅

}
. Then,

proposer i’s proposal in s is optimal. Therefore, s is a subgame perfect equilibrium.

s is obviously stationary. Hence, s is an SSPE that involves delay.

The intuitive explanation for the delay is as follows. Under the initial state,
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since the responders for proposer 1 have strong powers and their acceptances are

very “expensive,” a proposal to be accepted is not profitable for proposer 1. On the

other hand, if she offers a proposal to be rejected by responder 2, responder 2 exits

with a high probability, players 1 and 3 have symmetric powers in the next round,

and thus, player 1 obtains a moderate amount of expected payoff. Thus, proposer

i offers a proposal to be rejected in the first round.

Since there are externalities in Example 1, it is an open question whether the

delay occurs when there is the partial breakdown and no externality. It is notewor-

thy that in the models with other types of partial breakdowns (Miyakawa (2008),

Calvo (2008) and Hart and Mas-Colell (1996)), no SSPE involves delay. Since there

is no externality in these models, it is not clear whether the difference between the

delay in our model and no delay in the their models is due to the type of partial

breakdown or the existence of externalities.

7 Applications

In this section, we consider mergers of firms in Cournot and Bertrand competitions.

Let N be the set of firms. For any S ∈ 2N \ {∅}, let cS ∈ R+ be the marginal and

average cost for the merged firm of firms in S. Suppose that for any S, T ∈ 2N \{∅},
if S ⊆ T , then cS ≥ cT . S ⊂ T and cS > cT indicates the synergy effect of reducing

cost by merger.

7.1 Cournot competition

We consider Cournot competitions. We will demonstrate that there exists a cNBS

only if the cost synergy is large but there exists an fNBS. Moreover, we will show

that in three-firm case, there exists a full-coalition SSPE if the cost synergy is

moderate, and there is less likely to exist a full-coalition SSPE under δ → 1 than

p = 1.

Let P : R+ → R+ be the inverse demand function. For simplicity, suppose

that for any Q ∈ R+, P (Q) = 1Q≤1 (1−Q). For any π ∈ ΠN , let ΓC (π) be

the strategic game defined as follows: the set of players is π; for any S ∈ π, the

set of player S’s strategies is R+; for any S ∈ π, player S’s payoff function is

Rπ
+ ∋ q 7→

(
P
(∑

S∈π qS
)
− cS

)
qS ∈ R. Then, G (π) is a Cournot game played

by merged firms. For inner solutions to be ensured, suppose that for any π ∈ ΠN

and any S ∈ π,
1+

∑
T∈π cT

|π|+1 > cS . For any π ∈ ΠN , there uniquely exists a Nash

equilibrium of ΓC (π), and player S’s equilibrium payoff is
(
1+

∑
T∈π cT

|π|+1 − cS

)2
. Let

V be a map from CN to R such that for any (S, π) ∈ CN , V(S,π) is player S’s payoff

of the Nash equilibrium in ΓC (π).
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Since
∑

i∈N V({i},{{j}|j∈N}) ≤ V(N,{N}), there uniquely exists an fNBS of (N, v).

The fNBS is x ∈ RN such that for any i ∈ N ,

xi =

(1−cN )2

4 −
∑

j∈N

(
1+

∑
k∈N c{k}

|N |+1 − c{j}

)2
|N |

+

(
1 +

∑
k∈N c{k}

|N |+ 1
− c{i}

)2

.

There exists a cNBS if and only if (1−cN )2

4 ≥
∑

i∈N
(1−2c{i}+cN\{i})

2

9 , that is, the

profit under monopoly is greater than or equal to the sum of the profits that the

firms obtain when they are isolated. If there exists a cNBS, it is x ∈ RN such that

for any i ∈ N ,

xi =

(1−cN )2

4 −
∑

j∈N
(1−2c{j}+cN\{j})

2

9

|N |
+

(
1− 2c{i} + cN\{i}

)2
9

.

Suppose that |N | ≥ 3. Suppose that for some c ∈
[
0, 4

2|N |+(−1)|N|+3

)
, for any i ∈ N ,

c{i} = c and for any S ∈ 2N \{∅} with |S| ≥ 2, cS = 0. Then, there exists a cNBS if

and only if c ≥ 2
√

|N |−3

4
√

|N |
, which means that the cost synergy by merger is significant.

Note that
2
√

|N |−3

4
√

|N |
> 0, if |N | ≶ 7.5,

2
√

|N |−3

4
√

|N |
≶ 4

2|N |+(−1)|N|+3
. Then, if there are

eight or more firms, regardless of the magnitude of the cost synergy, the cNBS does

not exist.

Suppose that N = {1, 2, 3}. Suppose that for some c ∈
[
0, 12
)
, for any i ∈ N ,

c{i} = c and for any S ∈ 2N \ {∅} with |S| ≥ 2, cS = 0. Then, for some p̄ ∈ [0, 1),

for any p ∈ [p̄, 1), for some δ̄ ∈ [0, 1), for any δ ∈
[
δ̄, 1
)
, there exists a full-coalition

SSPE of G (δ, p) only if (if, resp.) 2−
√
3

4 ≤ c ≤ −2+
√
6

2 (2−
√
3

4 < c < −2+
√
6

2 , resp.).

Note that 0 < 2−
√
3

4 < −2+
√
6

2 < 1
2 . The reasoning is as follows: (i) if c is sufficiently

large, a two-firm coalition has a great advantage over the isolated firm, this coalition

is profitable, and thus, in state π with Aπ = N , the grand coalition fails to be

formed; (ii) if c is sufficiently small, by the merger paradox, a two-firm coalition is

not profitable, and thus, in state π with |Aπ| = 2, the full coalition fails to be formed;

(iii) if c is sufficiently small, by the positive externalities, an isolated firm’s profit

is large, in state π with Aπ = N , each responder’s continuation payoff is large, and

thus, the grand coalition fails to be formed. For some δ̄ ∈ [0, 1), for any δ ∈
[
δ̄, 1
)
,

there exists a full-coalition SSPE ofG (δ, 1) only if (if, resp.) 17−12
√
2 ≤ c ≤ −2+

√
6

2

(17 − 12
√
2 < c < −2+

√
6

2 , resp.). Note that 0 < 17 − 12
√
2 < −2+

√
6

2 . The

reasoning behind this condition is the same as (i) and (ii) above. Under p = 1, each

responder’s continuation payoff in state π with Aπ = N is her profit when every

player stands alone, the positive externalities do not affect the continuation payoff,

and thus, (iii) does not matter. Hence, the condition for a full-coalition SSPE to

exist is stronger under δ → 1 than p = 1 (that is, 17− 12
√
2 < 2−

√
3

4 ).
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7.2 Bertrand competition

We consider Bertrand competitions. We will demonstrate that there exist an cNBS

and a fNBS, and if there is a firm that is more efficient than the other firms and

there is the cost synergy in merger of the inefficient firms, the most efficient firm’s

share is smaller in the cNBS than in the fNBS. Moreover, we will show that in three-

firm case, there exits a full-coalition SSPE under δ → 1 only if the cost synergy is

small, but there exists always a full-coalition SSPE under p = 1,

Let ϵ ∈ R++ be the price unit. Let P = {ϵi | i ∈ Z+} be the set of prices. Let

Q : P → R+ be the demand function. For simplicity, suppose that for any p ∈ P ,

Q (p) = 1p≤1 (1− p). For simplicity, suppose that for any S ∈ 2N \ {∅}, cS ∈ P .

For any π ∈ ΠN , let ΓB (π) be the strategic game defined as follows: the set of

players is π; for any S ∈ π, the set of player S’s strategies is P ; for any S ∈ π,

player S’s payoff function is P π ∋ p 7→ 1pS=minT∈π pT (pS − cS)
Q(pS)

|argminT∈π pT | ∈ R.
Then, ΓB (π) is a Bertrand game played by merged firms. Suppose that for any

S ∈ 2N \ {∅}, cS < 1
2 . By this supposition, in any Nash equilibrium of ΓB (π)

with π ̸= {N}, no player enjoys the monopoly profit. For any (S, π) ∈ CN , let

cπ−S := min {cT | T ∈ π \ {S}} ∪
{
1+cN

2

}
. If S ̸= N , cπ−S is the cost of the most

efficient competitor for the merged firm of S, and if S = N , cπ−S is the monopoly

price. For any π ∈ ΠN , there exists an undominated Nash equilibrium of ΓB (π),

and in any such equilibrium, player S’s payoff is 1cS≤cπ−S

(
cπ−S − cS

) (
1− cπ−S

)
. Let

V be a map from CN to R such that for any (S, π) ∈ CN , V(S,π) is player S’s payoff

of an undominated Nash equilibrium of ΓB (π).

Let i ∈ argminj∈N c{j}. Since
∑

j∈N V({j},N\{i}) ≤
∑

j∈N V({j},{{k}|k∈N}) ≤
V(N,{N}), there uniquely exists a cNBS of (N, v). Note that for any j ∈ N \ {i},
c{j} ≥ c{i} ≥ cN\{j}. The cNBS is x ∈ RN such that

xi =
(1− cN )2 + 4 (|N | − 1)1cN\{i}>c{i}

(
cN\{i} − c{i}

) (
1− cN\{i}

)
4 |N |

,

and for any j ∈ N \ {i},

xj =
(1− cN )2 − 41cN\{i}>c{i}

(
cN\{i} − c{i}

) (
1− cN\{i}

)
4 |N |

.

Since
∑

j∈N V({j},{{k}|k∈N}) ≤ V(N,{N}), there uniquely exists an fNBS of (N, v).

The fNBS is x ∈ RN such that

xi =
(1− cN )2 + 4 (|N | − 1)

(
c
{{j}|j∈N}
−{i} − c{i}

)(
1− c

{{j}|j∈N}
−{i}

)
4 |N |

,
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and for any j ∈ N \ {i},

xj =
(1− cN )2 − 4

(
c
{{j}|j∈N}
−{i} − c{i}

)(
1− c

{{j}|j∈N}
−{i}

)
4 |N |

.

Thus, if cN\{i} < c
{{j}|j∈N}
−{i} and c{i} < c

{{j}|j∈N}
−{i} , player i’s share in the cNBS is

smaller than her share in the fNBS; otherwise, the cNBS is equal to the fNBS. Due

to the cost synergy, the cost of firm i’s (most efficient) competitor in her threat is

not greater in the cNBS than in the fNBS, and the other players’ payoff in their

threats are zero in both the cNBS and the fNBS. Thus, player i’s share is not

greater in the cNBS than in the fNBS.

Suppose that for any S, T ∈ 2N \{∅}, cS = cT . Then, for any S ̸= N , V(S,π) = 0.

Thus, for any (δ, p) ∈ [0, 1) × [0, 1], there exists a full-coalition SSPE of G (δ, p).

Suppose that N = {1, 2, 3}. Suppose that for some c ∈
[
0, 12
)
, c{1} = c{2} = c and

for any S ̸= {1} , {2}, cS = 0. Then, for some p̄ ∈ [0, 1), for any p ∈ [p̄, 1), for

some δ̄ ∈ [0, 1), for any δ ∈
[
δ̄, 1
)
, there exists a full-coalition SSPE of G (δ, p) only

if (if, resp.) c ≤ 3−
√
3

6 (c < 3−
√
3

6 , resp.). Note that 0 < 3−
√
3

6 < 1
2 . If c is large,

the advantage of a two-firm coalition that firm 1 belongs to over the other isolated

firm is large, this coalition is profitable, and thus, the grand coalition fails to be

formed. On the other hand, for some δ̄ ∈ [0, 1), for any δ ∈
[
δ̄, 1
)
, there exists a

full-coalition SSPE of G (δ, 1). Under p = 1, the profit of the two-firm coalition that

firm 1 belongs to is large, but since firm 1’s threat payoff is large, firm 1’s share in

the fNBS is large. Thus, the two-firm coalition cannot block the fNBS. Therefore,

regardless of c, the full-coalition SSPE exists.

8 Conclusion

We defined two kinds of NBS of PFGs (fNBS and cNBS). On the basis of any

PFG, we defined an EG, which is a propose-respond sequential game where the

first rejecter exits from the game with a probability. We showed that in the limit as

the discount factor tends to unity (without the partial breakdown, resp.), the cNBS

(fNBS, resp.) is supported as the expected payoff profile of any SSPE of the EG

such that in any subgame, a coalition of all active players is immediately formed.

We also provided a necessary and sufficient condition for such an SSPE to exist.

Moreover, we presented an example in which delay of agreements occurs.
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Appendix

A Lemmas

Let (δ, p) ∈ [0, 1)× [0, 1]. Let s be a full-coalition SSPE of G (δ, p).

Lemma 1. Let π be a state with Aπ ̸= ∅. For any i ∈ Aπ, let ui be player i’s

expected payoff of s in any subgame starting with state π. Let i ∈ Aπ. Let (S, x)

be a proposal of player i in a round with state π. Then, in the round with state

π, if for any j ∈ S \ {i}, xj > (1− δ) vπ{j} + δ (1− p) vπ{j} + δpuj, then, in s,

player i’s proposal (S, x) is accepted by all responders; if for some j ∈ S \ {i},
xj < (1− δ) vπ{j} + δ (1− p) vπ{j} + δpuj, then, in s, player i’s proposal (S, x) is

rejected by some responder.

Proof. Suppose that for any j ∈ S \ {i}, xj > (1− δ) vπ{j} + δ (1− p) vπ{j} + δpuj .

Given the other actions in s, the last responder j obtains xj by accepting (S, x) and

(1− δ)V(
{j},πAπ

{j}∪π
) + δ (1− p)V(

{j},πAπ

{j}∪π
) + δpuj = (1− δ) vπ{j} + δ (1− p) vπ{j} +

δpuj > xj by rejecting it. Thus, she accepts it in s. Let j be a responder.

Suppose that any follower of j accepts (S, x) in s. Then, given the other ac-

tions in s, responder j obtains xj by accepting (S, x) and (1− δ)V(
{j},πAπ

{j}∪π
) +

δ (1− p)V(
{j},πAπ

{j}∪π
) + δpuj = (1− δ) vπ{j} + δ (1− p) vπ{j} + δpuj > xj by rejecting

it. Thus, she accepts it in s. Therefore, by the mathematical induction, (S, x) is

accepted by all responders.

Suppose that for some j ∈ S \ {i}, xj < (1− δ) vπ{j} + δ (1− p) vπ{j} + δpuj .

Suppose that (S, x) is accepted. Player j’s payoff of s at her node at which she

responds (S, x) in a round with state π is xj . Her payoff of the deviation to rejection

is (1− δ)V(
{j},πAπ

{j}∪π
)+δ (1− p)V(

{j},πAπ

{j}∪π
)+δpuj = (1− δ) vπ{j}+δ (1− p) vπ{j}+

δpuj < xj . Thus, the payoff of s is greater than that of the deviation. This is a

contradiction. Thus, (S, x) is rejected. Q.E.D.

Lemma 2. Let π be a state with Aπ ̸= ∅. For any i ∈ A, let ui be player i’s

expected payoff of s in any subgame starting with state π and
(
Si, xi

)
be player i’s

proposal in s in any round with state π. Then, for any i ∈ Aπ, Si = Aπ and for

any j ∈ Si \ {i}, xij = (1− δ) vπ{j} + (1− p) δvπ{j} + pδuj.

Proof. Since s is full-coalition, Si = Aπ. Since s is full-coalition, by Lemma 1, for

any j ∈ Si \ {i}, xij ≥ (1− δ) vπ{j} + δ (1− p) vπ{j} + δpuj . Suppose that for some

j ∈ Si, xij > (1− δ) vπ{j}+δ (1− p) vπ{j}+δpuj . Let ϵ :=
xi
j−(1−δ)vπ{j}−δ(1−p)vπ{j}−δpuj

2 .

Let y be an element in RSi
such that yj = xij − ϵ and for any k ∈ Si \ {j},

yk = xk + ϵ
|Si|−1

. Then, for any k ∈ Si \ {i}, yk > (1− δ) vπ{k} + δ (1− p) vπ{k} +

δpuk. Thus, by Lemma 1,
(
y, Si

)
is accepted in s. Hence, by the deviation to
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proposing
(
y, Si

)
, player i’s payoff at her proposing node in any round with state

π increases by ϵ
|Si|−1

, which is a contradiction. Therefore, for any j ∈ Si \ {i},
xij = (1− δ) vπ{j} + (1− p) δvπ{j} + pδuj . Q.E.D.

B Proof of Theorem 1

Let (δ, p) ∈ [0, 1)× [0, 1]. Let s be a full-coalition SSPE of G (δ, p). Let π be a state.

For any i ∈ Aπ, let ui be player i’s expected payoff of s in any subgame starting

with state π. Then, by Lemma 2, for any i ∈ Aπ,

ui =
V(Aπ ,π∪{Aπ}) −

∑
j∈Aπ\{i}

(
(1− δ) vπ{j} + δ (1− p) vπ{j} + δpuj

)
|Aπ|

+ (|Aπ| − 1)
(1− δ) vπ{i} + δ (1− p) vπ{i} + δpui

|Aπ|

=
vπAπ −

∑
j∈Aπ

(
(1− δ) vπ{j} + δ (1− p) vπ{j} + δpuj

)
|Aπ|

+ (1− δ) vπ{i} + δ (1− p) vπ{i} + δpui.

and thus,

ui =

vπAπ−δp
∑

j∈Aπ uj

1−δp −
∑

j∈Aπ

(1−δ)vπ{j}+δ(1−p)vπ{j}
1−δp

|Aπ|
+

(1− δ) vπ{i} + δ (1− p) vπ{i}

1− δp
.

Note that since s is a full-coalition SSPE,
∑

i∈Aπ ui = V(Aπ ,π∪{Aπ}) = vπAπ . Then,

we have the conclusion. Q.E.D.

C Proof of Theorem 2

Let (δ, p) ∈ [0, 1) × [0, 1]. For any state π with Aπ ̸= ∅ and any i ∈ Aπ, let

uπi :=
vπAπ−

∑
j∈Aπ

(1−δ)vπ{j}+δ(1−p)vπ{j}
1−δp

|Aπ | +
(1−δ)vπ{i}+δ(1−p)vπ{i}

1−δp and xπi := (1− δ) vπ{i} +

δ (1− p) vπ{i}+δpuπi . For any state π with Aπ ̸= ∅, any i ∈ Aπ and any S ∈ 2A
π \{∅}
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with S ∋ i, let

aπiS :=

V(Aπ ,{Aπ}∪π) −
∑

k∈Aπ\{i}

xπk


−

(1− δ)V(S,πAπ
S ∪π) + δV(S,πAπ

S ∪π) −
∑

k∈S\{i}

xπk


=

δp |S|+ (1− δp) |Aπ|
|Aπ|

(
vπ{i} −

∑
k∈Aπ

(1− δ) vπ{k} + δ (1− p) vπ{k}

1− δp

)

−

(
(1− δ) vπS + δvπS −

∑
k∈S

(1− δ) vπ{k} + δ (1− p) vπ{k}

1− δp

)
.

For any state π with |Aπ| ≥ 2, any i ∈ Aπ and any j ∈ Aπ \ {j}, let

bπij :=

V(Aπ ,{Aπ}∪π) −
∑

k∈Aπ\{i}

xπk


−
(
(1− δ)V(

{i},πAπ

{i}∪π
) + δ (1− p)u

π∪{{j}}
i + δpuπi

)
= (1− δp)

(
vπAπ −

∑
k∈Aπ

(1− δ) vπ{k} + δ (1− p) vπ{k}

1− δp

)

− δ (1− p)
v
π∪{{j}}
Aπ\{j} −

∑
k∈Aπ\{j}

(1−δ)v
π∪{{j}}
{k} +δ(1−p)v

π∪{{j}}
{k}

1−δp

|Aπ| − 1

− δ (1− p)

(1− δ) v
π∪{{j}}
{i} + δ (1− p) v

π∪{{j}}
{i}

1− δp
− vπ{i}

 .

Necessity Suppose that there exists a full-coalition SSPE s of G (δ, p). Let π be

a state with Aπ ̸= ∅. Let S ∈ 2A
π \ {∅}. Let i ∈ S. Since s is a full-coalition SSPE,

by Lemma 2 and Theorem 1, player i’s payoff of s conditional on being a proposer

in the round with state π is V(Aπ ,{Aπ}∪π)−
∑

j∈Aπ\{i} x
π
j . For any ϵ ∈ R++, let y

ϵ be

an element in RS such that for any j ∈ S \{i}, yϵj = xπj + ϵ. Then, by Lemma 1 and

Theorem 1, for any ϵ ∈ R++, player i’s proposal (S, y
ϵ) is accepted by all responders

in s. Thus, for any ϵ ∈ R++, player i’s payoff of the deviation to proposal (S, yϵ) in

the round with state π is (1− δ)V(S,πAπ
S ∪π)+δV(S,πAπ

S ∪π)−
∑

j∈S\{i}

(
xπj + ϵ

)
=: wϵ.

Then, for any ϵ ∈ R++, since s is a subgame perfect equilibrium, V(Aπ ,{Aπ}∪π) −∑
j∈Aπ\{i} x

π
j ≥ wϵ. Hence, V(Aπ ,{Aπ}∪π) −

∑
j∈Aπ\{i} x

π
j ≥ limϵ→0w

ϵ. Thus, aπiS ≥
0, which is equivalent to (1). Player i’s payoff of the deviation to proposal rejected

by player j in s conditional on being a proposer in the round with state π is

(1− δ)V(
{i},πAπ

{i}∪π
) + δ (1− p)u

π∪{{j}}
i + puπi . Then, since s is a subgame perfect
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equilibrium, V(Aπ ,{Aπ}∪π)−
∑

j∈Aπ\{i} x
π
j ≥ (1− δ)V(

{i},πAπ

{i}∪π
)+δ (1− p)u

π∪{{j}}
i +

δpuπi . Thus, b
π
ij ≥ 0, which is equivalent to (2).

Sufficiency Suppose that for any state π with Aπ ̸= ∅, any i ∈ Aπ and any

S ∈ 2A
π \ {∅} with S ∋ i, (1) holds and for any state π with |Aπ| ≥ 2, any

i ∈ Aπ and any j ∈ Aπ \ {i}, (2) holds. Then, for any state π with Aπ ̸= ∅,
any i ∈ Aπ and any S ∈ 2A

π \ {∅} with S ∋ i, aπiS ≥ 0, and for any state π

with |Aπ| ≥ 2, any i ∈ Aπ and any j ∈ Aπ \ {j}, bπij ≥ 0. Construct a strategy

profile s of G (δ, p) as in any round with any state π, players’ actions described as

follows. Any proposer i proposes (Aπ, x) such that for any j ∈ Aπ \ {i}, xj = xπj .

Responses to any proposal (S, x) are recursively defined. The last responder j

accepts it if and only if xj ≥ xπj . Let k ∈ S \ {j}. If all followers of k accept

it, responder k accepts a proposal (S, x) if and only if xk ≥ xπk ; otherwise, she

accepts it if and only if (1− δ) vπ{k} + δ (1− p)u
π∪{{l}}
k + δpuπk ≥ xπk , where l is

the first follower who rejects it. Then, any player’s proposal in s is accepted in s.

Consider any player i’s proposing node with any state π. Since her proposal in s

is accepted in s, her payoff of s at the node is V(Aπ ,{Aπ}∪π) −
∑

j∈Aπ\{i} x
π
j . Her

payoff of the deviation to a proposal (S, x) accepted in s is less than or equal to

(1− δ)V(S,πAπ
S ∪π) + δV(S,πAπ

S ∪π) −
∑

j∈S\{i} x
π
j . SinceV(Aπ ,{Aπ}∪π) −

∑
j∈Aπ\{i}

xπj

−

(1− δ)V(S,πAπ
S ∪π) + δV(S,πAπ

S ∪π) −
∑

j∈S\{i}

xπj


= aπiS ≥ 0,

she cannot improve her payoff of this deviation. Player i’s payoff of the deviation to

a proposal rejected by responder j in s is (1− δ)V(
{i},πAπ

{i}∪π
) + δ (1− p)u

π∪{{j}}
i +

δpuπi . SinceV(Aπ ,{Aπ}∪π) −
∑

j∈Aπ\{i}

xπj

−
(
(1− δ)V(

{i},πAπ

{i}∪π
) + δ (1− p)u

π∪{{j}}
i + δpuπi

)
= bπij ≥ 0,

she cannot improve her payoff of this deviation. Thus, her proposal at the node

is optimal. Players’ responses in s is obviously optimal. Hence, by the one-stage

deviation principle, s is a subgame perfect equilibrium. Obviously, s is a stationary

and full-coalition strategy profile. Therefore, s is a full-coalition SSPE. Q.E.D.
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D Proof of Proposition 1

Let δ ∈ [0, 1). Suppose that for any subgame of (M,U) of (N,V ) and any π ∈ ΠM ,

U(M,{M}) ≥
∑

S∈π U(S,π) and the strict inequality holds for π = {{i} | i ∈ M}. Let
s be an SSPE of G (δ, 1). Let π be a state. For any i ∈ Aπ, let ui be player i’s

expected payoff of s in a subgame starting with state π and xi := (1− δ) v{i}+ δui.

Lemma 3. In s, any proposal (S, y) such that yi > xi for any responder i is

accepted by all responders.

Proof. Suppose that in s, there exists a responder who rejects (S, y). Let i be the

last responder who rejects it. Responder i’s payoff of s is (1− δ)V({i},{{j}|j∈Aπ}∪π)+

δui = xi. By the deviation to accepting it, she obtains yi. Since yi > xi, the

deviation gain is positive, which is a contradiction. Q.E.D.

Lemma 4.
∑

i∈Aπ ui ≤ V π
(Aπ ,{Aπ}).

Proof. Let h be a complete history in a subgame starting with state π. For any

i ∈ Aπ, let ūi be the payoff of player i at h. Then, since the transfers are offset, for

some ρ ∈
(
ΠAπ)N

,
∑

i∈Aπ ūi =
∑

t∈N (1− δ) δt−1
∑

S∈ρt V
π
(S,ρt)

. By the supposition

of the proposition, for any t ∈ N,
∑

S∈ρt V
π
(S,ρt)

≤ V(Aπ ,{Aπ}). Then,
∑

i∈Aπ ūi ≤
V π
(Aπ ,{Aπ}). Since complete history h is arbitrary,

∑
i∈Aπ ui ≤ V π

(Aπ ,{Aπ}). Q.E.D.

By the supposition of the proposition,
∑

i∈Aπ V π
({i},{{j}|j∈Aπ}) < V(Aπ ,{Aπ}).

Thus, by Lemma 4, V π
(Aπ ,{Aπ}) >

∑
j∈Aπ xj . Let ϵ :=

V π
(Aπ,{Aπ})−

∑
j∈Aπ xj

2 > 0. Sup-

pose that there exists a player i such that in s, her proposal in s is rejected by some

player. Then, her payoff of s at her proposing node is (1− δ)V({i},{{j}|j∈Aπ}∪π) +

δui = xi. By the deviation to proposing (Aπ, y) such that for any j ∈ Aπ \ {i},
yj = xj +

ϵ
|Aπ |−1 , since by Lemma 3, the proposal is accepted by all responders, she

obtains payoff V π
(Aπ ,{Aπ})−

∑
j∈Aπ\{i} yj . By the definitions of ϵ and y, The deviation

gain is
(
V π
(Aπ ,{Aπ}) −

∑
j∈Aπ\{i} yj

)
−xi = ϵ > 0, which is a contradiction. Q.E.D.
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