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1 Introduction

This paper examines the relationships between the equilibrium outcome of

a noncooperative bargaining game and the Nash bargaining solution (NBS)

under incomplete information. We extend a n-person complete information

bargaining game model in which the correspondence between the stationary

subgame perfect equilibrium (SSPE) and the asymmetric NBS exists to the

bargaining problem with incomplete information. We consider a variation of

a noncooperative bargaining game model with random proposers by Hart and

Mas-Colell (1996) and Okada (1996). The bargaining procedure is described

as follows: One player is selected as a proposer according to some probability

distribution among n players. The selected player proposes a feasible alloca-

tion rule, i.e., a “mechanism”. If the proposal is accepted unanimously, all

players play a communication game under the mechanism. If some player re-

jects the proposal, the game ends with some exogenously given probability of

breakdown. With the complementary probability, the game goes to the next

round.

We consider a bargaining problem with incomplete information, in which

each player has a private information about his type and proposes a mechanism

when he becomes a proposer. Thus, an informed player designs a mechanism

about bargaining outcomes. Therefore, our bargaining game includes the prob-

lem of mechanism design by an informed principal in Myerson (1983).

Since the seminal work by Nash (1953), there is a vast number of stud-

ies on the relationships between an equilibrium outcome of a noncooperative

bargaining game and an NBS under complete information. Rubinstein (1982)

provides the alternating-offers bargaining game where the payoff allocations in

every subgame perfect equilibrium (SPE) converge to the NBS in the limit as

players become perfectly patient. Binmore, Rubinstein and Wolinsky (1986)

obtain the Nash bargaining solution in the limit if the exogenous risk of break-
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down is vanishing. Binmore (1987) obtains the asymmetric NBS as an SPE

outcome in the bargaining game with a generalized probability distribution

under which a player is selected as a proposer.

The extensions to the n-person NBS have been pursued by Hart and Mas-

Colell (1996) and Krishna and Serrano (1996). Krishna and Serrano (1996)

provides a noncooperative bargaining game model in which players can exit

after partial agreements and their bargaining procedure does not contain the

chance moves and stochastic elements. On the other hand, in Hart and Mas-

Colell (1996), a proposer is randomly selected with equal probability and the

proposal is agreed to by unanimous consent among the players. If the proposal

is rejected by some players, players face a risk of breakdown of the negotia-

tions to continue the next bargaining round. Our bargaining game model is

an extension of Hart and Mas-Colell’s model to a general probability distri-

bution. Recently, some noncooperative multilateral bargaining game models

are provided to support the n-person asymmetric NBS by Miyakawa (2008),

Okada (2007), Laruelle and Valenciano (2008), Kultti and Vartiainen (2010),

and Britz, Herings and Predtetchinski (2010). Our bargaining game model is

reduced to the model in Miyakawa (2008) if the game is in complete informa-

tion.

The NBS for the bargaining problem with incomplete information has been

examined by Harsanyi and Selten (1972), Myerson (1984), Weidner (1992) and

de Clippel and Minelli (2004). Harsanyi and Selten derived the generalized NBS

in incomplete information bargaining problem as a Bayesian Nash equilibrium

of a noncooperative game satisfying axioms. Myerson defined the generaliza-

tion of the NBS using three axioms: a probability-invariance axiom, a variant

axiom of independence of irrelevant alternatives, and a random-dictatorship

axiom. Weidner considered the relationships between two studies. de Clip-

pel and Minelli considered the incomplete information bargaining game with

verifiable types. All these studies refine the set of Bayesian Nash equilibria
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of the noncooperative game using some axioms. We focus on a noncoopera-

tive foundation of the NBS rather than the refinement through axioms. Thus,

we try to adopt an appropriate extensive form game of bargaining to have a

relationship to the NBS under incomplete information. In addition, we con-

sider n-person, precisely more than 2 person, bargaining game problem. The

previous studies examined only a 2 person bargaining game. Recently, Okada

(2009) investigates the concept of core under incomplete information and the

n-person noncooperative bargaining game with verifiable types and with coali-

tion formations. We exclude the problem of coalition formation, but consider

the game with unverifiable types.

It is noteworthy to mention the reason why we consider more than 2 player

game. Our purpose is not a generalization of the number of players in a bar-

gaining game. In general, the NBS under incomplete information necessitates

the interim efficient (IE) mechanism to realize the NBS allocation. However, as

Myerson and Satterthwaite (1983) pointed out, even a ex post efficient (EPE)

mechanism fails to exist, satisfying Bayesian incentive compatibility (BIC), in-

terim individual rationality (IR) and ex post budget balance (BB). To achieve

the NBS under incomplete information as an equilibrium outcome, we need to

consider a situation where at least an EPE mechanism always exists in the bar-

gaining game. Precisely, we assume that the joint probability distribution of

types satisfies Cremer-McLean condition in Cremer and MacLean (1988) and

McAfee and Reny (1992) and Identifiability condition in Kosenok and Severi-

nov (2008) and Severinov (2008). Under these assumptions, types of players

must be correlated and there must be more than 2 players in the bargaining

game to satisfy both conditions.

We obtain the following results. We provide a necessary and sufficient con-

dition for the existence of an SPBE of the noncooperative bargaining game in

which every player proposes the EPE, BIC, BB mechanism satisfying the “full

surplus extraction” property. Moreover, the proposals in the SBPE is nuetral
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optimum (Myerson, 1983) for the proposer. As a risk of the breakdown of nego-

tiations is vanishing, the limit of the conditionally expected payoff vector in the

SPBE is characterized as the asymmetric NBS under incomplete information.

The asymmetric NBS is different from the NBSs in Harsanyi and Selten (1972)

and Myerson (1984). In the previous studies under complete information, the

equilibrium outcomes and all players’ proposals converge to the NBS uniquely

as a risk of breakdown is vanishing or as all players are patient enough. Re-

cently, Kultti and Vartiainen (2010) and Herings and Predtetchinski (2010)

have shown that the convergence result does not hold if the boundary of the

set of feasible payoffs is not differential. We show that the convergence result

fails to hold under incomplete information too.

This paper is organized as follows. Section 2 defines the Bayesian bargain-

ing problem and the Nash bargaining solutions under incomplete information.

Section 3 provides a noncooperative bargaining game with incomplete infor-

mation. Section 4 examines the relationships to the literature in mechanism

design by informed principal. Section 5 characterizes an SPBE of the noncoop-

erative bargaining game. Section 6 discusses relationships between the SPBE

and the NBS under incomplete information. Section 7 concludes.

2 Nash Bargaining Solution

2.1 Bayesian Bargaining Problem

We consider n-person bargaining problem with n (≥ 3) private informed play-

ers. We denote the set of players by N = {1, 2, . . . , n} and a generic element

by i ∈ N . As in Myerson (1983, 1984), a n-person bargaining problem Γ is

characterized by the following form

Γ = (D, d, {Θi}i∈N , {vi}i∈N , p),
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where D is the set of public decisions or feasible outcomes and d ∈ D is the

disagreement point. For each player i, Θi is the set of possible types and θ is a

generic element of Θi. We also denote the set of type profile by Θ =
∏

j∈N Θj

and a element by θ ∈ Θ. We let Θ−i denote the set of types of the players

other than i and θ−i ∈ Θ−i =
∏

j 6=iΘj. We assume that D and Θ are finite

sets1.

Probability measure p is a common prior on Θ and pi(θi) denote the marginal

probability distribution of player i’s type θi. The probability distribution of

type profile θ−i of players other than player i conditional on type θi of player

i is

pi(θ−i|θi) =
p(θ)∑

θ′−i∈Θ−i
p(θ′−i, θi)

.

Each vi is a payoff function fromD×R×Θ to the real number R. We assume

that a payoff function for each player i is quasi-linear in decision d and transfer

ti, i.e., vi(d, ti, θ) = ui(d, θ) − ti. A payoff for each player in disagreements is

normalized to zero. That is, it is assumed that vi(d, 0, θ) = ui(d, θ) = 0 for all

θ ∈ Θ.

2.2 Feasible and efficient mechanism

Amechanism µ is formally defined as a combination of message spaces S1, . . . , Sn

for all players and an outcome function g :
∏

i∈N Si → D × Rn which maps

from the set of message profiles to the set of public decisions and transfers.

We write µ = (S1, . . . , Sn, g) ∈ M and g(·) = (d(·), t(·)), where M is the set

1It is well-known that no a priori finite bound on the number of types exists to model

a game with incomplete information (Mertens and Zamir, 1985). Moreover, it should be

assumed that the type space has the “beliefs-determine-preferences” property, thus, there

is a one-to-one correspondence between a player’s preferences and a player’s beliefs about

other types. Heifetz and Neeman (2006) pointed out that information structures with this

property are “small” among all conceivable common prior information structure. However,

the assumption of finite type space is usual in the literature on mechanism design.
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of mechanisms. We call a mechanism in which the message space Si for each

player is her type space Θi itself direct mechanism. A direct mechanism is rep-

resented by µ = (Θ1×· · ·×Θn, g(·)), where g : Θ1×· · ·×Θn → D×Rn. Let us

denote g(·) = (d(·), t(·)). We call d : Θ → D the decision rule and t : Θ → Rn

the transfer rule. We assume that all mechanisms in the set of mechanisms M

have a finite set of outcomes. Moreover, without loss of generality, we focus on

deterministic outcome functions because the payoff function is quasi-linear.

For any direct mechanism µ, we can define the conditionally expected payoff

for player i, given that his type is θi, if all players report their types truthfully

as follows:

Ui(µ|θi) =
∑

θ−i∈Θ−i

[ui(d(θ−i, θi), (θ−i, θi))− ti(θ−i, θi)] pi(θ−i|θi).

Moreover, the conditionally expected payoff when he reports θ̂i ∈ Θi and all

other players report their types honestly is represented by

Ui(µ, θ̂i|θi) =
∑

θ−i∈Θ−i

[
ui(d(θ−i, θ̂i), (θ−i, θi))− ti(θ−i, θ̂i)

]
pi(θ−i|θi).

Let us introduce some notions about the direct mechanism.

Definition 1. A direct mechanism µ is Bayesian incentive compatible (BIC)

if for all i ∈ N and for all θ̂i ∈ Θi,

Ui(µ|θi) ≥ Ui(µ, θ̂i|θi).

Definition 2. A direct mechanism µ(·) = (d(·), t(·)) is budget balanced (BB)

if for all θ ∈ Θ, ∑
i∈N

ti(θ) = 0.

Definition 3. A decision rule d∗(·) is ex post efficient if for all θ ∈ Θ,

d∗(θ) ∈ argmax
d∈D

∑
i∈N

ui(d, θ).

Moreover, a mechanism µ(·) = (d(·), t(·)) is ex post efficient (EPE) if µ(·) is

BB and d(·) is EPE for all θ ∈ Θ.
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Definition 4. A mechanism µ is interim efficient (IE) in M if it is a solution

to the maximization problem:

max
µ∈M

∑
i∈N

∑
θi∈Θi

ζi(θi)Ui(µ|θi),

where ζi(θi) is a positive number for each player i and each type θi.

The utility weights for each player depend only on the player’s own type in

the maximization problem for the IE mechanisms. As Holmstrom and Myerson

(1983) have argued, the set of IE mechanisms in M is a subset of the set of

EPE mechanisms in M.

We denote the set of BIC mechanisms whose range is D×Rn by M∗, which

is usually called the set of feasible mechanisms.

2.3 Nash bargaining solution under incomplete informa-

tion

Let us introduce the concept of the NBS under incomplete information. Focus

on the set of all incentive compatible mechanisms. The conditionally expected

payoff for each player is defined according to truthful reports. Given any mech-

anism µ, we let U(µ) denote the vector of all conditionally expected payoffs

Ui(µ|θi) for each type of each player. That is, U(µ) = ((Ui(µ|θi))θi∈Θi
)i∈N .

Harsanyi and Selten (1972) proposed the generalized NBS for games with

incomplete information as a solution of

max
µ∈M

∏
i∈N

(∏
θi∈Θi

Ui(µ|θi)pi(θi)
)
,

where pi(θi) =
∑

θ−i∈Θ−i
p(θ−i, θi). We call it Harsanyi-Selten solution. Nash

(1950) presented the symmetric NBS to a bargaining problem under complete

information as a solution of

max
v∈V

∏
i∈N

(vi) ,
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where V is the set of feasible payoff allocations. Harsanyi and Selten solution

is one of natural generalizations of the Nash (1950) bargaining solution.

The symetric NBS under complete information can be extended to the

asymmetric NBS.

Definition 5. A payoff allocation v∗ is called the asymmetric Nash bargain-

ing solution (ANBS) under complete information with positive weight w =

(w1, . . . , wn) ∈ ∆(N) if v∗ is a solution of the maximization problem:

max
v∈V

∏
i∈N

(vi)
wi , (1)

where V is the set of feasible payoff allocations.

We introduce the ANBS with weight w under incomplete information, which

is different from that in Harsanyi and Selten (1972).

Definition 6. The vector of all conditionally expected payoffs U(µ) is the

ANBS under incomplete information with weight w ∈ ∆(N) to a Bayesian

bargaining problem Γ if U(µ) is a solution of the maximization problem:

max
µ∈M∗

∏
i∈N

(∑
θi∈Θi

pi(θi)Ui(µ|θi)

)wi

,

where M∗ is the set of all feasible mechanisms.

We will show that the above ANBS under incomplete information is sup-

ported by a standard noncooperative bargaining game.

We have the following fundamental result:

Theorem 1. Any mechanism to implement the ANBS under incomplete in-

formation with weight w is interim efficient.

Proof. The maximization problem in the ANBS is transformed into the maxi-

mization problem of the form

max
µ∈M

∏
i∈N

∑
θi∈Θi

ζi(θi)Ui(µ|θi),

10



where

ζi(θi) =
wipi(θi)∑

θi
′∈Θi

pi(θ′i)Ui(µ|θ′i)
.

Thus, the mechanism corresponding to the ANBS under incomplete informa-

tion is IE by Definition 4.

Remark 1. Let us consider a example of public project which was discussed

in Myerson (1979, 1984) in order to understand the relationships between

Harsanyi-Selten solution and the ANBS under incomplete information with

weight w. For simplicity, we assume that wi = w̄ for all i ∈ N . Two players

face a decision whether to build a public project which costs $100. Player

1 has two possible types of the valuation for the public project. If player

1 is 1h type, which is denoted by θh1 , then the public project is worth $90

to him and the event of θh1 = 90 occurs with probability 9/10. If player

1 is 1` type; θ1 = θ`1, then the public project is only worth $30 to him

and the event of θ`1 = 30 occurs with probability 1/10. Player 2 has only

one possible type and the public project is always worth $90 to her. Thus,

θ2 = 90. Formally, Θ1 = {θh1 , θ`1} = {90, 30}, Θ2 = {90}, d = 0, 1 and

D = {(d, t) ∈ {0, 1} × R2|t1 + t2 ≥ 100d}. A payoff function for player i

is given by ui((d, t); θi) = θid − ti. The set of interim utilities which can be

achieved by feasible BIC mechanism is represented by the set of vectors

(U1(µ|θh1 ), U1(µ|θ`1);U2(µ|θ2))

= (90d(30)− t1(30), 30d(30)− t1(30); 72− 82d(30) + t1(30))

with d(30) ∈ [0, 1] and t1(30) ∈ R.

In the ANBS under incomplete information,
∏2

i=1

∑
θi∈Θi

pi(θi)Ui(µ|θi) is

maximized. Therefore, the solution to the maximization problem is given by

the following pooling mechanisms:

d(30) = d(90) = 1, t1(30) = t1(90), t2(30) = t2(90) = 100− t1(30).
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The expected utilities are 90− t1(30) for player 1 with type θh1 , 30− t1(30) for

player 1 with type θ`1 and 90 − 100 + t1(30) under t1(30) ∈ [10, 30] for player

2. Thus, the ANBS under incomplete information consists of multiple payoff

allocations in this example. On the other hand, the Harsanyi-Selten solution

µHS is given by the vector of interim utilities

(U1(µ
HS|θh1 ), U1(µ

HS|θ`1);U2(µ
HS|θ2)) = (486/13, 27; 36).

A neutral bargaining solution (Myerson, 1984), which is a bargaining solu-

tion satisfying the probability-invariance axiom, the extension axiom and the

random-dictatorship axiom, is given by the vector of utilities

(U1(µ
N |θh1 ), U1(µ

N |θ`1);U2(µ
N |θ2)) = (40, 10; 36).

These three solutions have a distinct value in this example.

3 Non-cooperative Bargaining Game

We present a noncooperative bargaining game model to realize the ANBS un-

der incomplete information as an equilibrium outcome. The key feature of

our bargaining game is that a player who is selected as a proposer offers a

mechanism, in the other word, a contract, to determine a public decision and

transfers among players and, then, all other players accept or reject the mech-

anism. Thus, players negotiate about a mechanism in the bargaining game.

We consider the following noncooperative bargaining game G(Γ, w, ρ).

Stage 0: A nature selects a type profile θ ∈ Θ. Each players learn his own

types θi privately.

Stage 1: At the beginning of each round t, one player is selected as a proposer

according to a probability distribution w ∈ ∆(N). wi is a probability

that player i is chosen as a proposer among N .
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Stage 2: The selected proposer i offers a mechanism µi ∈ M.

Stage 3: All other players accept or reject the mechanism simultaneously.

Stage 4: If all players accept it, µi is implemented, i.e., each player sends a

message si ∈ Si and then, the outcome g(s) ∈ D × Rn is determined. If

some player rejects it, the game continues to stage 1 in the next round

with probability ρ. Otherwise, the negotiation breaks down with prob-

ability 1 − ρ and the game ends. When the game ends, all players get

their disagreement payoff of 0.

The bargaining game is regarded as an extension of the informed principal

game by Myerson (1983). If a proposer is predetermined and the game always

ends when the proposal is rejected, i.e., ρ = 0, our bargaining game is the

same as in Myerson (1983). If the game is in complete information, our game

is reduced to a bargaining game model in Miyakawa (2008) and Okada (2007).

We adopt a perfect Bayesian equilibrium (PBE) (Fudenberg and Tirole,

1991, 1993) with a stationary property as a solution concept. When the game

is with complete information, the solution concept corresponds to a stationary

subgame perfect equilibrium (SSPE).

The bargaining game model can be represented by an infinite-length exten-

sive form game. All nodes in an information set of player i in the extensive form

at round t is determined by a sequence of past actions z = (z1, . . . , zt−1, zt),

where zt, t = 1, 2, . . . , denotes the sequence of actions in round t. It describes

a history about who became a proposer, what a mechanism was offered by the

proposer and which of an acceptance or a rejection each responder selected.

A posterior belief βi(θi) about other players’ types for player i in type θi is

represented by a probability measure on Θ−i. The beliefs for all players is de-

noted by {βi}i∈N = {{(βi(θi))θi∈Θi
}i∈N}, where βi(θi) ∈ ∆(Θ−i). As a result,

a state at round t is given by (z, {βi}i∈N). We denote a strategy for player
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i by a sequence σi = {σt
i}∞t=0, where σt

i is the tth round strategy. A strategy

combination σ = (σ1, . . . , σn) determines the payoffs for all players.

Definition 7. A pair of a strategy combination and a belief system (σ, β) is

called a stationary perfect Bayesian equilibrium (SPBE) if σ is an PBE and

σt
i in each bargaining round t (t = 1, 2, . . . ) depends only on a history zt and

belief system βi within round t.

A stationary equilibrium of the noncooperative bargaining game with in-

complete information is also focused on in Okada (2009). In an SPBE, every

player’s action does not depend on the whole history of actions. Moreover, any

player’s behavior in each bargaining round does not change even if proposals

were rejected in past rounds.

4 Informed Principal Mechanism Design

4.1 Cremer-McLean, Kosenok-Severinov condition

Our goal is to show that our noncooperative bargaining game model realizes

the ANBS under incomplete information as an SPBE outcome. As in Theorem

1, a mechanism to implement the NBS under incomplete information must be

IE. Therefore, we focus on the situation where there exists at least an EPE

mechanism to reach our goal. However, it is well known that mechanisms sat-

isfying BIC, interim IR, ex post BB and EPE can fail to exist in private values

environments with independent types, as Myerson and Sattherthwaite (1983)

have shown. We impose the following conditions on the prior distribution p on

the type space Θ in order to ensure the existence of EPE mechanisms. The

first one is introduced by Cremer and McLean (1988), so it is called “Cremer-

McLean condition.”
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Definition 8. A probability distribution p satisfies Cremer-McLean(CM) con-

dition if there are no i ∈ N , θi ∈ Θi and λi : Θi \ {θi} → R+ such that

pi(θ−i|θi) =
∑

θ′i∈Θi\{θi}

λi(θ
′
i)pi(θ−i|θ′i), for all θ−i ∈ Θ−i.

This condition means that vectors pi(·|θi) can not be expressed as a convex

combination of all other vectors pi(·|θ′i), θ′i 6= θi with weights λi(θ
′
i).

We add identifiability condition by Kosenok and Severinov (2008).

Definition 9. A probability distribution p satisfies identifiability(I) condition

if for all q ∈ ∆(Θ); q 6= p, there exists i ∈ N and θi ∈ Θi such that qi(θi) > 0

and for any collection of nonnegative coefficients {λθ′i,θi
}, we have

qi(θ−i|θi) 6=
∑
θ′i∈Θi

λθ′i,θi
pi(θ−i|θ′i)

for at least one θ−i ∈ Θ−i.

Note that CM condition rules out the cases that types of players are in-

dependent and that each player’s conditional beliefs are independent of his

type. Thus, a prior p has some correlation among types. CM condition holds

generically when the number of types for each player is less than or equal to

the number of types of all other players. Moreover, as shown in Kosenok and

Severinov (2008), I condition holds generically when there are at least three

players (n ≥ 3), where in case that n = 3, at least one of the players has

at least three types. CM condition and I condition will ensure the existence

of the EPE, interim IR, ex-post BB, BIC mechanism for each proposer in a

bargaining game. This result has been established by Kosenok and Severinov

(2008).

Example 1. Kosenok and Severinov (2008) have presented a sufficient condi-

tion for CM and I condition in the case with three players, each of whom has
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two types, to be satisfied. Let us denote Θi = {θ1i , θ2i } for i ∈ {1, 2, 3}. The

condition is given by

p(θ11θ
1
2θ

1
3)p(θ

1
1θ

2
2θ

2
3)− p(θ11θ

1
2θ

2
3)p(θ

1
1θ

2
2θ

1
3) < 0,

p(θ11θ
1
2θ

1
3)p(θ

2
1θ

1
2θ

2
3)− p(θ11θ

1
2θ

2
3)p(θ

2
1θ

1
2θ

1
3) > 0.

The following joint probability of types in a game with three players, each of

whom has two types, satisfies the above conditions:

θ12 θ22

θ11 0.2 0.2

θ21 0.1 0

θ13

θ12 θ22

θ11 0.2 0.1

θ21 0.2 0

θ23

Figure 1: Example of joint probability distribution of types

A number in the cell of the matrix represents a probability of each combination

of types. In the above example, p(θ11, θ
1
2, θ

1
3) = 0.2, p(θ21, θ

1
2, θ

1
3) = 0.1 and

p(θ11, θ
1
2, θ

2
3) = 0.2, p(θ11, θ

2
2, θ

2
3) = 0.1.

4.2 Strong solution, neutral optimum and RSW alloca-

tion

Our bargaining game includes a mechanism design problem by informed prin-

cipal. After a proposer in the bargaining game is selected, a proposer with his

private information offers a mechanism and other players accept or reject the
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proposal. Now, assume that a proposer is player i and a feasible mechanism

µ0 is arbitrated if some player rejects the proposal. We focus on this part

of the bargaining game, which is called the informed principal game. Let us

clarify the relationships between the solution concept in the informed principal

problem by Myerson (1983) and Maskin and Tirole (1992) and the equilibrium

proposal in our bargaining game.

Myerson (1983) has provided a strong solution for the principal as a rea-

sonable solution to the mechanism design problem. A mechanism is said to be

safe for the principal if the mechanism is incentive feasible and would remain

BIC and interim IR even if all the players knew the principal’s true type, no

matter what that type may be. A mechanism µi is said to be undominated

if there is no mechanism νi such that all types of the principal i would ex-

pected at least a higher payoff in νi than in µi, thus, Ui(µ
i|θi) ≤ Ui(ν

i|θi) for

all θi ∈ Θi, with strict inequality for at least one θi ∈ Θi. A mechanism is a

strong solution for the principal relative to µ0 if it is safe for the principal and

is undominated and an outcome in disagreements is given by µ0. However, a

strong solution fails to exist for many informed principal games. Then, Myer-

son (1983) defined a neutral optimum as an alternative solution concept. Let

Γi = (D,µ0, {Θi}i∈N , {vi}i∈N , p) be the informed principal game with the prin-

cipal i. Let B(Γi) denote the set of blocked payoff allocations of the principal

i, which satisfies the following axioms:

Axiom 1 (Domination). For any w, z ∈ RΘi , if w ∈ B(Γi) and ∀θi ∈ Θi,

z(θi) ≤ w(θi), then z ∈ B(Γi).

Axiom 2 (Openness). For all Γi, B(Γi) is open subset of RΘi .

We say that Γ̄i = (D̄, µ0, {Θi}i∈N , {v̄i}i∈N) is a extension of Γi if D ⊆ D̄

and v̄i(d, θ) = vi(d, θ) whenever d ∈ D.

Axiom 3 (Extension). If Γ̄i is any extension of Γi, then B(Γi) ⊆ B(Γ̄i).
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Axiom 4 (Strong Solution). If µi is a strong solution for the principal i relative

to µ0, then (Ui(µ
i|θi))θi∈Θ /∈ B(Γi).

Let us define B∗(Γi) =
∪

B(Γi)∈H B(Γi), where H is the set of all functions

satisfying Axiom 1-4.

Definition 10. A mechanism µi is a neutral optimum for the principal i rel-

ative to µ0 in the informed principal game Γi if it is both BIC and IR and

(Ui(µ
i|θi))θi∈Θi

/∈ B∗(Γi).

See, also, Severinov (2008) about the definition of neutral optimum. As

Myerson (1983) has shown, a neutral optimum always exists for any informed

principal game, and if a strong solution exists, then it is a neutral optimum.

We will see later that the proposal by player i in the candidate strategy profile

of the bargaining game is a neutral optimum for the principal i.

Maskin and Tirole (1992) defined an RSW (Rothschild-Stiglitz-Wilson) al-

location µ̂i(µ0) relative to the reservation allocation µ0 as a mechanism that

maximizes the payoff of each type of principal among the class of BIC mecha-

nisms that guarantee the agents at least the utilities in µ0 and still BIC even

if the agents knew the principal’s type2. As Maskin and Tirole mentioned, an

RSW allocation is a strong solution for the principal if and only if it is interim

efficient relative to a prior belief p. Therefore, when a strong solution exists

and an RSW is interim efficient relative to a common prior p, a neutral opti-

mum mechanism coincides with an RSW allocation because a neutral optimum

mechanism is a strong solution.

2In Myerson and Tirole (1992), an RSW allocation is defined for 2-person game. We

consider an n-person game version of RSW allocation.
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5 Characterization of Equilibria

5.1 Inscrutability Principle

Let us start to characterize an SPBE in our bargaining game model.

First, there is no loss of generality in considering only direct incentive com-

patible mechanisms on the equilibrium path of G(Γ, w, ρ) by the revelation

principle in Myerson (1979). For any mechanism µi ∈ M which is proposed by

player i in any PBE, there exists an outcome-equivalent direct BIC mechanism.

Second, there is no loss of generality in assuming that all types of the

proposer should offer the same mechanism on the equilibrium path because

there exists a type-independent mechanism which implement a same outcome

by a combination of mechanisms such that different types of the principal prefer

different mechanisms. As a result, the proposer’s actual choice of mechanism

seems to convey no information about the type of the proposer to other players

on the equilibrium path. This assumption is called the inscrutability principle

by Myerson (1983).

Owing to above principles, we can prove the existence of SPBE of the

bargaining game in a simple manner. We can assume that on the SPBE path of

G(Γ, w, ρ), all types of the proposer i offer a same direct mechanism (xi(·), ti(·))

which is incentive compatible under the beliefs pj(θ−j|θj) in the initial round.

Moreover, the equilibrium beliefs of any player at stage 2 in the initial round are

equal to pj(θ−j|θj) by the inscrutability principle. Even in sequential bargaining

rounds, all types of the proposer offer the same direct incentive compatible

mechanism under the beliefs at the beginning of the bargaining round and the

responders’ beliefs are unchanged on the equilibrium path. We will show that

there exists an SPBE such that every proposal is accepted in the initial round

and the belief system {βi}i∈N on the equilibrium path remains unchanged at

the initial posterior belief system {(pi(θ−i|θi))θi∈Θi
}i∈N by the Bayes’s rule.
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5.2 Existence of perfect Bayesian Equilibrium

In this section, we show that our noncooperative bargaining game G(Γ, w, ρ)

has an SPBE in which each proposer offers a mechanism with the full “resid-

ual” surplus extraction property. Here, the full “residual” surplus extraction

property means that a proposer gets all residual surplus after giving only their

expected continuation payoffs of all responders in the case that they reject the

proposal. The proposal with this property has been played an important role in

the noncooperative bargaining game theory. For example, consider the ultima-

tum game. It is well known that the continuation payoff of a responder is zero

because the game ends when he rejects the proposal. Therefore, the proposer

offers a proposal to extract all surplus of their cooperation and this proposal

consists of a subgame perfect equilibrium. Even in Rubinstein’s alternating-

offer bargaining or other bargaining game models, a player offers a proposal

to assign the responders only their continuation payoffs when they reject the

proposal. If the residual surplus by any acceptable proposal is negative, the

proposer selects a delay of agreement.

We apply the same idea to the bargaining game with incomplete infor-

mation. In the context of mechanism design, the full surplus extraction has

been examined by Cremer and McLean (1988), McAfee and Reny (1992) and

Kosenok and Severinov (2008). They identified a necessary and sufficient con-

dition for the full surplus extraction by the uninformed principal through BIC,

IR, EPE mechanisms with or without ex-post BB, which is CM condition and

I condition. Severinov (2008) showed that there exists an EPE, interim IR,

ex-post BB, BIC mechanism with full surplus extraction property if a prior

distribution about types satisfies CM and I condition even in the informed

principal setting. Here, IR implies the requirement for the acceptance of the

proposal by each responder. We will examine an SPBE of G(Γ, w, ρ) such that

every proposer offers the proposal with the full “residual” surplus extraction

20



property.

In order to formalize a proposal with the full “residual” surplus extrac-

tion property, let us firstly define the expected social surplus from an EPE

mechanism for type θi of player i by

Wi(θi) =
∑

θ−i∈Θ−i

[∑
j∈N

uj(d
∗(θ), (θ−i, θi))

]
pi(θ−i | θi),

where θ = (θi, θ−i). We impose the following assumption about the expected

social surplus:

Assumption 1. The expected social surplus from an EPE mechanism for

every type of every player is strictly positive; i.e., Wi(θi) > 0 for all θi ∈ Θi

and for all i ∈ N .

By Corollary 1 of Theorem 1 in Kosenok and Severinov (2008), we have the

existence theorem of EPE, BIC, BB mechanisms as follows:

Theorem 2. (Kosenok and Severinov, 2008) Under CM and I condition, there

exists an EPE, BIC, BB mechanism µi∗ = (d∗(·), ti∗(·)) to realize a nonnegative

payoff vector ((Ri
i(θi))θi∈Θi

, ((V i
j (θj))θj∈Θj

)j∈N,j 6=i) such that the expected payoff

Ri
i(θi) of type θi of player i is equal to

Ri
i(θi) = Wi(θi)−

∑
θ−i∈Θi

p(θ−i|θi)
∑

j∈N,j 6=i

ρvj(θj)

and the expected payoff V i
j (θj) for each type of player j(6= i) is ρvj(θj).

Proof. See Appendix.

Because ρvj(θj) is considered as the continuation payoff for type θj of player

j, the mechanism µi∗ corresponds to the proposal with the full “residual” sur-

plus extraction property by player i.

We will show that the following strategies and beliefs can be supported as

a part of PBE of G(Γ, w, ρ): First, all types of player i offer the mechanism µi∗
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at stage 2 in the initial bargaining round if he is selected as a proposer. Then,

all types of all other players accept the proposal in stage 3. In stage 4, all

players report their types truthfully. Thus, the mechanism µi∗ is implemented.

Beliefs in stage 3 after the mechanism µi∗ is proposed are equal to the initial

conditionally beliefs pi(·|θi) for any type θi of player i ∈ N . Moreover, beliefs

in stage 4 when they report their types after all types accept the proposal µi∗

are also equal to the initial beliefs.

Theorem 3. Suppose that probability distribution p satisfies CM and I condi-

tions. There exists an SPBE of G(Γ, w, ρ) in which all types of player i as a

proposer offer mechanism µi∗ and the proposal is accepted at the initial round

for all i ∈ N if and only if the equations system; for all i ∈ N and for all

θi ∈ Θi,

vi(θi) = wi

Wi(θi)−
∑

θ−i∈Θ−i

pi(θ−i|θi)
∑

j∈N,j 6=i

ρvj(θj)

+ (1− wi)ρvi(θi), (2)

has nonnegative solution ((v∗i (θi))θi∈Θ)i∈N .

Proof. See Appendix.

Applying the same argument in Severinov (2008) to a part of informed

principal game in our model, we can show that the mechanism µi∗ for each

proposer i is a neutral optimum. Let µ̃ be the mechanism in which µi∗ is

implemented with probability wi for each i ∈ N .

Theorem 4. Mechanism µi∗ is a neutral optimum relative to µ̃ for the principal

i.

Proof. See Appendix.

Theorem 4 says that the SPBE proposal for each player in Theorem 3 is

stable from the notion of blocking in Myerson (1983). Moreover, if the strong

solution exists, µi∗ is a strong solution relative to µ̃ for the principal i.
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6 Relationships to Nash Bargaining Solution

We clarify a relationship between the NBS and the expected payoff vector in

the SPBE in Theorem 3.

6.1 Complete information case

First, let us consider a case in which the bargaining problem is under complete

information. The bargaining game with complete information is regarded as a

case that the type space is singleton; Θ = {θ}. A noncooperative bargaining

game model corresponds to the model in Miyakawa (2008) and Okada (2007).

In the singleton-type case, an SPBE implies an SSPE of the noncooperative

bargaining game. Equation (2) is reduced to, for i = 1, . . . , n,

vi(θi) = wi

[
max
d∈D

∑
j∈N

uj(d, θ)−
∑

j∈N\{i}

ρvj(θj)

]
+ (1− wi)ρvi(θi). (3)

We denote the maximum aggregate payoff by W (θ) = maxd∈D
∑

j∈N uj(d, θ).

The equation system (3) has a nonnegative unique solution (vρi (θi))i∈N =

(wiW (θ))i∈N for any ρ. Applying the same argument in Theorem 3, we have an

SSPE of the bargaining game with complete information in which the expected

payoff vector is (vρi (θi))i∈N . In the SSPE, player i proposes payoff allocation

(xi
i(θi), (ρwjW (θ))j∈N\{i}), where xi

i(θi) = W (θ) −
∑

j∈N\{i} ρwjW (θ). As the

risk of breakdown is vanishing; ρ → 1, the proposals by all players in the SSPE

converge to the same payoff allocation. Assume that limρ→1 v
ρ
i (θi) = v∗i (θi) for

all i ∈ N . The limit SSPE payoff allocation satisfies

v∗i (θi)

wi

=
v∗j (θj)

wj

, for all i, j ∈ N, i 6= j,∑
i∈N

v∗i (θi) = W (θ).

This condition is identical to the Kuhn-Tucker condition of the maximization

problem (1) for the ANBS under complete information.

Summarizing the above arguments, we have the following proposition:
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Theorem 5. Assume that Θ = {θ}. (i) There exists a unique SSPE of the

noncooperative bargaining game with complete information G(w, ρ) in which

the SSPE payoff allocation is equal to the ANBS under complete information

with weight w. (ii) As ρ → 1, every proposal by the proposer converges to the

ANBS under complete information with weight w and the proposal is accepted

by all players immediately.

Proposition 5 says that there is a one-to-one correspondence between the

weight parameter w in the ANBS and the probability distribution w for the

selection of a proposer in the noncooperative bargaining game. We call (ii) in

Proposition 5 the convergence result.

6.2 Incomplete information case

Next, let us examine the bargaining game with incomplete information.

The case of ρ = 0: When ρ = 0, a proposer make a take-it-or-leave-it offer in

the bargaining game, and the game ends with probability one if the proposal

is rejected. Players play the same game as the informed principal game in

Myerson (1983) after one player is selected as a proposer. (2) is reduced to

vi(θi) = wiWi(θi), i ∈ N, θi ∈ Θi.

Under Assumption 1, vi(θi) ≥ 0. By Theorem 3, an SPBE of the bargaining

game always exist. In the SPBE, the proposer i offers a mechanism which gives

the proposer with type θi a payoff of Wi(θi) and the responders zero, which is

denoted by µi∗M , and the proposal is accepted. In this bargaining game, mech-

anism µi∗M is implemented and player i extracts all surplus with probability

wi after the nature chooses a type θ ∈ Θ. The conditionally expected payoffs

((vMi (θi))θi∈Θi
)i∈N in the SPBE satisfies∑

θi∈Θi
pi(θi)v

M
i (θi)

wi

=

∑
θj∈Θj

pj(θj)v
M
j (θj)

wj

, for i, j ∈ N, i 6= j.
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This means that the SPBE payoff allocation is fair in the ex ante viewpoint

because the all w-weighted ex ante expected payoffs are equal.

The case of ρ 6= 0: Although (2) has a nonnegative solution of ((vj(θj))θj∈Θj
)i∈N

when ρ is close to zero, the value of vj(θj) for some θj ∈ Θj might be negative in

the solution to (2) for large ρ. In this case, by Theorem 3, there is no SPBE in

which player i proposes mechanism µi∗ and all responders accept the proposal

immediately.

Before providing the main theorem, we re-examine the ANBS under incom-

plete information in Definition 6. By Corollary 1 in Kosenok and Severinov

(2008), under CM and I conditions, there exists a BIC, BB, IR mechanism to

realize the nonnegative expected payoff vector ((vi(θi))θi∈Θi
)i∈N which satisfies∑

i∈N

∑
θi∈Θi

vi(θi)pi(θi) =
∑
i∈N

∑
θ∈Θ

ui(d
∗(θ), θ)p(θ). (4)

Thus, the set of feasible payoff allocation is the set of ((vi(θi))θ∈Θ)i∈N satisfying

(4). The ANBS under incomplete information is given by a solution to the

maximization problem:

max
((vi(θi))θi∈Θi

)i∈N

∏
i∈N

( ∑
θi∈Θi

pi(θi)vi(θi)

)wi

(5)

sub. to (4).

A first order condition of the maximization problem is∑
θi∈Θ pi(θi)vi(θi)

wi

− 1

λ
= 0, i = 1, . . . , n, (6)

and (4), where λ is a Lagrange multiplier. Thus, the maximization prob-

lem of the ANBS under incomplete information determines only the value of∑
θi∈Θi

pi(θi)vi(θi) for each i ∈ N and indetermines each vi(θi).

As long as (2) has a nonnegative solution for any ρ ∈ [0, 1), we have the

following proposition about the convergence result:
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Theorem 6. Assume that (2) has a nonnegative solution of (vρi (θi))θi∈Θi
)i∈N

for any ρ ∈ [0, 1). Let ((v∗i (θi))θi∈Θi
)i∈N be a limit point of (vρi (θi)θi∈Θi

)i∈N as

ρ → 1. Then, there exists a limit SPBE of the bargaining game G(Γ, w) in

which the expected payoff allocation is ((v∗i (θi))θi∈Θi
)i∈N and it belongs to the

set of the ANBS under incomplete information. In the limit SPBE, all player

propose the same mechanism to implement ((v∗i (θi))θi∈Θi
)i∈N and the proposal

is accepted by all other players.

Proof. Let us define

Ri
i(θi) = Wi(θi)−

∑
θ−i∈Θ−i

pi(θ−i|θi)
∑

j∈N,j 6=i

ρvρj (θj).

Rearranging (2), we have

Ri
i(θi) =

1− ρ

wi

vρi (θi) + ρvρi (θi), for θi ∈ Θi, i ∈ N. (7)

By limρ→1 v
ρ
i (θi) = v∗i (θi) and (7), we have that limρ→1 R

i
i(θi) = v∗i (θi) for all

θi ∈ Θi and for all i ∈ N and also have that limρ→1 ρv
ρ
i (θi) = v∗i (θi). As

ρ → 1, all players proposes the same mechanism to realize ((v∗i (θi)θi∈Θi
)i∈N

asymptotically in the SPBE. Thus, µi∗ → µ∗ as ρ → 1 for all i ∈ N in the

SPBE.

Because mechanism µi∗ is EPE, we have

Ri
i(θi) +

∑
θ−i∈Θ−i

pi(θ−i|θi)
∑

j∈N,j 6=i

ρvρj (θj) = Wi(θi), for all θi ∈ Θi.

Multiplying the above equation by each p(θi) and adding them up together,

we obtain∑
θi∈Θi

pi(θi)R
i
i(θi) +

∑
j∈N,j 6=i

∑
θj∈Θj

pj(θj)ρv
ρ
j (θj) =

∑
θ∈Θ

[∑
j∈N

uj(d
∗(θ), θ)

]
p(θ).

(8)

For other j ∈ N , j 6= i, we also have∑
θj∈Θj

pj(θj)R
j
j(θj) +

∑
i∈N,i 6=j

∑
θi∈Θi

pi(θi)ρv
ρ
i (θi) =

∑
θ∈Θ

[∑
i∈N

ui(d
∗(θ), θ)

]
p(θ).

(9)
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Subtracting (9) from (8), we obtain∑
θi∈Θi

pi(θi)
(
Ri

i(θi)− ρvρi (θi)
)
−
∑
θj∈Θj

pj(θj)
(
Rj

j(θj)− ρvρj (θj)
)
= 0. (10)

Substituting (7) to (10), we have∑
θi∈Θi

pi(θi)v
ρ
i (θi)

wi

=

∑
θj∈Θj

pj(θj)v
ρ
j (θj)

wj

, for i, j ∈ N, i 6= j. (11)

Because limρ→1 v
ρ
i (θi) = v∗i (θi) and limρ→1 R

i
i(θi) = v∗i (θi), (8) and (10) is

reduced to, as ρ → 1,∑
θi∈Θi

pi(θi)v
∗
i (θi)

wi

=

∑
θj∈Θj

pj(θj)v
∗
j (θj)

wj

, for i, j ∈ N, i 6= j, (12)∑
i∈N

∑
θi∈Θ

pi(θi)v
∗
i (θi) =

∑
θ∈Θ

∑
i∈N

ui(d
∗(θ), θ)p(θ). (13)

These conditions corresponds to the Kuhn-Tucker condition (6) and (4) of the

maximization problem (5) for the ANBS under incomplete information.

By (11), the SPBE payoff allocation is fair between players in the ex ante

viewpoint, irrespective of ρ. Moreover, taking into account of (7), the SPBE

selects an allocation from the set of the ANBS under incomplete information,

which satisfies

v∗i (θi)

v∗i (θ
′
i)

=
limρ→1R

i
i(θi)

limρ→1Ri
i(θ

′
i)

for θi, θ
′
i ∈ Θi, θi 6= θ′i.

Example 2. To understand the relationship between the ANBS under incom-

plete information and the SPBE of the bargaining game, let us consider the

example of public project in Remark 1 again. Suppose that the game is played

by three players and each player has two possible types; N = {1, 2, 3} and

Θi = {θ1i , θ2i }. The joint probability distribution of types is same as in Exam-

ple 1. For the simplicity, assume that w1 = w2 = w3 = 1/3. The valuation of

the public project is θ11 = 30 and θ21 = 90 for player 1, θ12 = 40 and θ22 = 80,

and θ13 = 70 and θ23 = 50 for player 3. Under the joint probability distribution
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of types in Example 1, the marginal distributions of each type are p1(θ
1
1) = 0.7,

p1(θ
2
1) = 0.3, p2(θ

1
2) = 0.7, p2(θ

2
2) = 0.3 and p3(θ

1
3) = 0.5, p3(θ

2
3) = 0.5. The set

of payoff allocations in ANBS under incomplete information is given by

E =

{
(vi(θ

j
i ))

j=1,2
i=1,2,3

∣∣∣∣ 0.7v1(θ11) + 0.3v1(θ
2
1) = 70/3,

0.7v2(θ
1
2) + 0.3v2(θ

2
2) = 70/3, 0.5v3(θ

1
3) + 0.5v3(θ

2
3) = 70/3

}
.

As ρ → 1, the expected payoffs in the SPBE converge to v∗1(θ
1
1) = 16/3,

v∗1(θ
2
1) = 196/3, v∗2(θ

1
2) = 34/3, v∗2(θ

2
2) = 154/3, v3(θ

1
3) = 100/3 and v∗3(θ

2
3) =

40/3. Therefore, the vector (v∗i (θ
j
i ))

j=1,2
i=1,2,3 is in the set E. On the other hand,

Harsanyi-Selten solution is given by (vHS
i (θji ))

j=1,2
i=1,2,3 = (70/3, 70/3; 70/3, 70/3;

70/3, 70/3). The Harsanyi-Selten solution is not in E.

6.3 Failure of convergence result

As we have seen in Theorem 6, (2) must have a nonnegative solution for any ρ ∈

[0, 1) to obtain the convergence result. However, under incomplete information,

for some ρ̄ ∈ [0, 1), for all ρ ∈ [ρ̄, 1), (2) might have a solution with some

negative element vρi (θi) < 0 . In this case, the convergence result does not hold

because the PBE in Theorem 3 fails to exist for large ρ.

We provide a necessary and sufficient condition for the solution of (2) to

be nonnegative. Let us denote |Θ1| = K1, |Θ2| = K2, . . . , |Θn| = Kn and

K =
∑

i∈N Ki, and let the type space of player i be Θi = {θ1i , . . . , θ
Ki
i }. Each

equation in (2) is rewritten by, for θi ∈ Θi, i ∈ N ,

1− (1− wi)ρ

wi

vi(θi) +
∑

j∈N\{i}

∑
θj∈Θj

p(θj, θi)

pi(θi)
ρvj(θj) = Wi(θi),

where p(θi, θj) =
∑

θ−ij∈Θ−ij
p(θi, θj, θ−ij) is a marginal distribution of a pair

of types (θi, θj). Therefore, the equation system (2) is rewritten in the matrix

form:

Av = W, (14)
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where A = [a1, . . . , aK ], v = [v1(θ
1
1), . . . , v1(θ

K1
1 ), v2(θ

1
2), . . . , vn(θ

Kn
n )]T and

W = [W1(θ
1
1), . . . ,Wn(θ

Kn
n )]T . Each ai is a K-dimension vector as follows:

a1 =

[
1− (1− w1)ρ

w1

, 0, . . . , 0,
p(θ11, θ

1
2)ρ

p1(θ12)
, . . . ,

p(θ11, θ
Kn
n )ρ

pn(θKn
n )

]T
a2 =

[
0,

1− (1− w1)ρ

w1

, 0, .., 0,
p(θ11, θ

1
2)ρ

p1(θ12)
, . . . ,

p(θ11, θ
Kn
n )ρ

pn(θKn
n )

]T
...

aK1 =

[
0, ...., 0,

1− (1− w1)ρ

w1

,
p(θ11, θ

1
2)ρ

p1(θ11)
, . . . ,

p(θ11, θ
Kn
n )ρ

pn(θKn
n )

]T
aK1+1 =

[
p(θ12, θ

1
1)ρ

p(θ11)
, . . . ,

p(θ12, θ
K1
1 )

p1(θ
K1
1 )

,
1− (1− w2)ρ

w2

, 0, . . . , 0,

p(θ12, θ
1
n)ρ

pn(θ1n)
. . . ,

p(θ12, θ
Kn
n )ρ

pn(θKn
n )

]T
...

aK =

[
p(θKn

n , θ11)ρ

p1(θ11)
, . . . ,

p(θKn
n , θ

Kn−1

n−1 )ρ

pn−1(θ
Kn−1

n−1 )
, 0, . . . , 0,

1− (1− wn)ρ

wn

]T
.

Because matrix A is non-singular; detA = 0, the equation system (14) has a

solution v, but the solution might contain some negative elements.

Let 〈x, y〉 be the inner product of two vectors x and y. Applying Farkas’

lemma (see, for example, Rockafellar, 1970) to (14) directly, we have the fol-

lowing lemma:

Lemma 1 (Farkas’ lemma). There exists a nonnegative (v1(θ
1
1), . . . , vn(θ

Kn
n ))

such that Av = W if and only if 〈W,x〉 ≤ 0 for all x such that 〈ai, x〉 ≤ 0 for

i = 1, . . . , K.

Let C denotes the set of all nonnegative linear combinations of a1, . . . , aK .

The condition in Lemma 1 is equivalent to W ∈ C, where C is the closure of

C.

If ρ → 0, each vector ai is close to the unit vector in which the ith element is

1, and then the set of C expands to the nonnegative orthant of K-dimensional
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space. Since Wi(θi) ≥ 0, there exists ρ ∈ [0, 1) such that for all ρ ∈ [0, ρ)

and for all W ∈ RK , W ∈ C. This result is consistent with the fact that the

candidate SPBE of the bargaining game always exist when the proposer makes

a take-it-or-leave-it offer in the case of ρ = 0.

Next, consider a case in which all players is selected as a proposer with

equal probability; wi = 1/n for all i ∈ N . In this case, the diversity among

Wi(θi) for all θi is related to the convergence result. Let us consider the most

extreme case such that Wi(θi) = W for all i ∈ N and all θi ∈ Θi. Thus, there

is no diversity among Wi(θi). Since 1 − (1 − wi)ρ/wi = n − (n − 1)ρ > 1 for

all i ∈ N and 0 ≤ p(θj, θi)ρ/pi(θi) < 1 for all θi ∈ Θi and for all θj ∈ Θj, the

vector W is sure to be in the C. The convergence result holds in this case.

Example 3: (Diversity of Wi(θi)) We provide an example in which the con-

vergence result fails to hold. Consider Example 2 again. However, assume that

θ11 = 90, θ21 = 30, θ12 = 80, θ22 = 40 and others are same as Example 2. We

have that v∗1(θ
1
1) = 164/3, v∗1(θ

2
1) = −16/3, v∗2(θ

1
2) = 146/3, v∗2(θ

2
2) = 26/3 and

v∗3(θ
1
3) = 146/3, v∗3(θ

2
3) = 80/3. Thus, v∗1(θ

2
1) is negative. In this example,

(W1(θ
1
1),W1(θ

2
1),W2(θ

1
2),W2(θ

2
2),W3(θ

1
3),W3(θ

2
3))

=

(
87

0.7
,
23

0.3
,
79

0.7
,
31

0.3
,
61

0.5
,
49

0.5

)
≈ (124.2, 76.6, 112.8, 103.3, 122, 98).

On the other hand, in Example 2,

(W1(θ
1
1),W1(θ

2
1),W2(θ

1
2),W2(θ

2
2),W3(θ

1
3),W3(θ

2
3))

=

(
41

0.7
,
29

0.3
,
45

0.7
,
25

0.3
,
39

0.5
,
31

0.5

)
≈ (58.5, 96.6, 64.2, 83.3, 78, 62).

The diversity among Wi(θi) in Example 2 was smaller than that in Example 3.

Example 4: (Near complete information) Even if information structure is

nearly complete information, the convergence result fails to hold. Consider
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the same situation as in Example 3 except the joint probability distribution of

types.

θ12 θ22

θ11 1− 3ε ε

θ21 0 0

θ13

θ12 θ22

θ11 ε 0

θ21 ε 0

θ23

Figure 2: Near complete information case

If ε is close to zero, the information structure is near to complete infor-

mation Θ = {(θ11, θ12, θ13)}. However, as ρ → 1 and ε → 0, but ε 6= 0, we

obtain that v∗1(θ
1
1) = 50, v∗1(θ

2
1) = −10, v∗2(θ

1
2) = 50, v∗2(θ

2
2) = 10, v∗3(θ

1
3) = 50,

v∗3(θ
2
3) = 30 as convergences.

7 Concluding Remark

We examined a noncooperative bargaining game with incomplete information

and specified the NBS which has a noncooperative foundation. We showed that

the convergence result of the SPBE of the noncooperative bargaining game to

the ANBS does not necessarily hold under incomplete information.

From the results in this paper, we would have some comments on the Nash

program under incomplete information. The clear relationship between the

equilibrium outcome of a noncooperative bargaining game and the ANBS exists

under complete information. Even if the bargaining procedure is unchanged,
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the relationship is weakened under incomplete information. In this paper, we

showed a necessary and sufficient condition for the limit SSPE of the nonco-

operative bargaining game to belong to the set of the ANBS under incomplete

information. But, the ANBS under incomplete information is not appropriate

for the interim solution concept of the Bayesian bargaining game because the

interim payoffs for types of each player are indetermined by the maximization

problem of the ANBS. Furthermore, the SPBE might fail to exist for large

ρ under incomplete information. In this case, the convergence result of the

SPBEs to the ANBS does not hold. As a result, our attempt to the Nash

program under incomplete information is insufficient, and many problems are

open to the question.

First, we considered only the bargaining game satisfying both CM condi-

tion and I condition on the joint prior probability of types. By this limitations,

our arguments can not apply to the 2-person bargaining problem directly. We

should relax these conditions. Second, we considered only the static mecha-

nisms for the proposer in the bargaining game, but the dynamic mechanism

design should be allowed as in Mezzetti (2004). Dynamic mechanisms might

expand the feasible set of payoff allocations even in more general settings.

Appendix

A. Proof of Theorem 2.

Kosenok and Severinov (2008) have established the following surprising

result as a Corollary of their main Theorem (Theorem 1):

Corollary 1. (Kosenok and Severinov) Consider any ex-ante socially rational

decision rule d(θ), and suppose that the prior p is I and CM condition holds for

all agents. Then for any collection of nonnegative constants vj(θj) satisfying:∑
i∈N

∑
θi∈Θi

vi(θi)pi(θi) =
∑
i∈N

∑
θ∈Θ

ui(d(θ), θ)p(θ), (15)
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there exists a BIC, BB, and IR Bayesian mechanism (d(θ), t(θ)) such that the

expected surplus of type θi of agent i in this mechanism is equal to vi(θi).

We check that the expected payoff vector ((Ri
i(θi))θi∈Θi

, (V i
j (θj))θj∈Θj

)j∈N,j 6=i)

in Theorem 2 satisfies the above condition (15). We have∑
θi∈Θi

Ri
i(θi)pi(θi) +

∑
j∈N,j 6=i

∑
θj∈Θj

V i
j (θj)pj(θj)

=
∑
θi∈Θi

Wi(θi)−
∑

θ−i∈Θ−i

pi(θ−i|θi)
∑

j∈N,j 6=i

ρvj(θj)

 pi(θi)

+
∑

j∈N,j 6=i

∑
θj∈Θj

ρvj(θj)pj(θj)

=
∑
θi∈Θi

∑
θ−i∈Θ−i

[∑
j∈N

ui(d
∗(θ), (θ−i, θi))p(θ−i, θi)

]

−
∑
θi∈Θi

∑
θ−i∈Θ−i

p(θ−i, θi)
∑

j∈N,j 6=i

ρvj(θj) +
∑

j∈N,j 6=i

ρvj(θj)pj(θj)

=
∑
θ∈Θ

[∑
j∈N

uj(d
∗(θ), (θ))p(θ)

]
=
∑
i∈N

∑
θ∈Θ

ui(d
∗(θ), (θ))p(θ).

Thus, the payoff vector satisfies condition (15). Therefore, it implies Theorem

2.

B. Proof of Theorem 3.

Suppose that mechanism µ0 is implemented with probability ρ and the

disagreement point d is realized with probability 1 − ρ when player j rejects

any proposal. Let us denote vj(θj) the expected payoff for type θj of player j

when µ0 is implemented. Because a payoff for player j with type θj is assumed

to be zero if d is realized, player j obtains the expected payoff ρvj(θj). In

addition, let us define the expected residual surplus for type θi of player i by

Ri
i(θi) = Wi(θi)−

∑
θ−i∈Θ−i

p(θ−i|θi)
∑

j∈N,j 6=i

ρvj(θj).

We have the following lemma:
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Lemma 2. Assume that Ri
i(θi) ≥ ρvi(θi) and ρvj(θj) ≥ 0 for all j ∈ N and

for all θj ∈ Θj. There exists an PBE of the informed principal game with

principal i in which player i proposes mechanism µi∗, the proposal is accepted

by all players and µi∗ is implemented.

Proof. In the PBE, all types of player i offer mechanism µi∗ by inscrutability

principle. Then, the beliefs about player i’s type by the responders j ∈ N ,

j 6= i, are unchanged. µi∗ gives the responders of player j ∈ N , j 6= i, with

type θj the expected payoff of ρvj(θj). Every responder is indifferent between

the acceptance and the rejection of the proposal because the same payoff is

obtained. Thus, the acceptance of the proposal µi∗ is (locally) optimal for every

type of any player j ∈ N , j 6= i. Furthermore, these acceptances transmit no

information about players’ types. By Theorem 2, mechanism µi∗ is BIC under

the initial beliefs pj(θ−j|θj) for all j ∈ N . Then, it is locally optimal for

all players to report their true type under mechanism µi∗. Therefore, it is

sufficient to show that any type of the principal i has no incentive to deviate

from proposing µi∗ to other mechanism µ. Type θi of player i obtains the

expected payoff of Ri
i(θi) by proposing µi∗, and he obtains ρvi(θi) if his proposal

is rejected. Since Ri
i(θi) ≥ ρvi(θi), it is not optimal for player i with type θi to

make an unacceptable proposal.

Fix an arbitrary mechanism µ = (S1, . . . , Sn;x
µ(·), tµ(·)), where Sj is a

message space for player j ∈ N . Consider a finite game Gi(µ) as follows.

Player i is a proposer to design a mechanism. In the first stage of Gi(µ), the

proposer i has two choices; exit and proposing µ. If she chooses the exit, type

θi gets R
i
i(θi) immediately. Otherwise, she offers mechanism µ. Let Ui(µ

i∗|θi)

be the payoff when she chooses the exit option. In the next stage, all other

players accept or reject the proposal µ. In the last stage, the mechanism µ is

implemented if all players accept it. If some player rejects the proposal, each

type θj including player i gets the payoff of ρvj(θj), j ∈ N .

Since the game Gi(µ) has only finite periods, there exists a PBE (τ, γ, β) of
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Gi(µ), using the existence theorem of Nash equilibrium3. Let (τ, γ, β) denotes

the probability τi(µ|θi) with which type θi of the proposer i offers mechanism µ,

the probability τj(µ|θj) with which type θj accept µ, the probability measure

γi(·|θi, µ) on Sµ
i representing the message strategy for type θi under mechanism

µ, the belief βR
j (·|θj, µ) of type θj about other types θ−j when µ is offered by

player i, and the belief βI
j (·|θj, µ) about other types θ−j when the mechanism

is implemented.

Let s = (s1, . . . , sn) be the profile of messages in implementation of the

mechanism. We will show that the probability with which proposer i offers µ

must be zero; τi(µ|θi) = 0 in the PBE. The expected payoff for type θi of player

i conditional on µ and (τ, γ, β) is given by

Ui(τ, γ, β|µ, θi)

=
∑

θ−i∈Θ−i

βR
i (θi|θi, µ)

[∑
s∈S

(ui(x
µ(s), θ) + tµi (s))

∏
j∈N

γj(sj|θj, µ)

] ∏
j∈N\i

τj(µ|θj).

From the subgame perfection of player i’s proposal, it follows that

τi(µ|θi) =

1 if Ui(τ, γ, β|µ, θi) > Ui(µ
i∗|θi),

0 if Ui(τ, γ, β|µ, θi) < Ui(µ
i∗|θi).

(16)

First, let us show that Ui(µ
i∗|θi) ≥ Ui(τ, γ, β|µ, θi) for all θi ∈ Θi. The

proof is given by contradiction. Suppose that there exists θ̂i ∈ Θi such that

Ui(θ̂i|µ, τ, γ, β) > Ui(µ
i∗|θi). The subgame perfection implies τi(µ|θ̂i) = 1. By

the Bayes rule, the beliefs of type θj is

βR
j (θ−j|θj, µ) =

τi(µ|θi)p(θ−j, θj)∑
θ′i∈Θi

τi(µ|θ′i)p(θ′i, θj)
, for j 6= i ∈ N,

where p(θi, θj) is the marginal probability distribution of a pair (θi, θj).

3For the existence of sequential equilibrium by Kreps and Wilson (1982), we need to as-

sume the finiteness of the set of feasible mechanisms. However, because we apply the weaker

solution concept of perfect Bayesian equilibrium, we do not need an additional assumption.

See, also, Fudenberg and Tirole (1991).
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We have the following inequalities:

∑
j∈N,j 6=i

∑
θj∈θj

ρvj(θj)

∑
θ′i∈Θi

τi(µ|θ′i)p(θ′i, θj)∑
θ′∈Θi

τi(µ|θ′i)pi(θ′i)

+
∑
θi∈Θi

Ui(µ
i∗|θi)

τi(µ|θi)p(θi)∑
θ′i∈Θi

τi(µ|θ′i)pi(θ′i)

>
∑

j∈N,j 6=i

∑
θj∈θj

Uj(τ, γ, β|µ, θj)
∑

θ′i∈Θi
τi(µ|θ′i)p(θ′i, θj)∑

θ′i∈Θi
τi(µ|θ′i)pi(θ′i)

+
∑
θiΘi

Ui(τ, γ, β|µ, θi)
τi(µ|θi)pi(θi)∑

θ′i∈Θi
τi(µ|θ′i)pi(θ′i)

>
∑

j∈N,j 6=i

∑
θj∈θj

Uj(τ, γ, β|µ, θj)
∑

θ′i∈Θi
τi(µ|θ′i)p(θ′i, θj)∑

θ′i∈Θi
τi(µ|θ′i)pi(θ′i)

+
∑
θi∈Θi

Ui(µ
i∗|θi)

τi(µ|θi)pi(θi)∑
θ′i∈Θi

τi(µ|θ′i)pi(θ′i)
.

The first inequality is satisfied because µi∗ is an EPE, BB mechanism with the

full residual extraction property for each θi ∈ Θ, and the second inequality

is derived from (16). Then, there exists some θj ∈ Θj, j 6= i, such that

Ui(τ, γ, β|µ, θj) < ρvj(θj). Moreover, it should be satisfied that τj(µ|θj) > 0.

Player j can get ρvj(θj) > 0 by rejecting µ. This implies that it is not (locally)

optimal for type θj to accept µ. Thus, τj(µ|θj) = 0. This is a contradiction.

We conclude that Ui(τ, γ, β|µ, θi) ≤ Ui(µ
i∗|θi) for all θi ∈ Θi.

Then, if Ui(τ, γ, β|µ, θi) > Ui(µ
i∗|θi), it implies that τi(µ|θi) = 0 for θi ∈ Θi

by subgame perfection. Even if Ui(τ, γ, β|µ, θi) = Ui(µ
i∗|θi), we can construct

a new PBE with τ̃i(µ|θi) = 0. Therefore, we obtain that τi(µ|θi) = 0 for any

θi ∈ Θi. This means that every type θi ∈ Θi selects the exit option and gets

Ui(µ
i∗|θi) with probability one in Gi(µ).

Proof of Theorem 3: (Only if) Suppose that there exists an SPBE such

that consists of the following strategies and beliefs of the bargaining game

G(Γ, w, ρ). In every round of the bargaining game, all types of player i offer

the mechanism µi∗ with probability one. All types of player i accept µj∗ which is
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proposed by other player j. Moreover, they report their types truthfully under

mechanism µi∗. The beliefs in stage 3 and 4 of every bargaining round are

given by the initial conditional belief pj(θ−j|θj) after µi∗ is proposed. If player

i proposes mechanism µ ∈ M such that µ 6= µi∗, each player plays (τ, γ, β)

which was considered in Gi(µ) in Lemma 2. The game Gi(µ) is “embedded”

in the original bargaining game G(Γ, w, ρ).

By the stationarity, the same bargaining game begins at the next round even

if some player rejects the proposal because beliefs of all players are unchanged

and the strategies does not depend on the strategies in the previous round.

Therefore, by the rule of the game, the expected payoff vector ((vi(θ))θi∈Θi
)i∈N

in the SPBE satisfies, for all i ∈ N and for all θi ∈ Θi,

vi(θi) = wi

Wi(θi)−
∑

θ−i∈Θ−i

pi(θ−i|θi)
∑

j∈N,j 6=i

ρvj(θj)

+ (1− wi)ρvi(θi). (17)

If for some θi, vi(θi) < 0, then Ri
i(θi) < ρvi(θi) or ρvi(θi) < 0. Thus, it is

optimal for type θi of player i to offer an unacceptable proposal or to reject

the proposal. This contradicts the fact that the above strategy combination is

an SPBE. Therefore, (17) has a nonnegative solution.

(If) If (17) has a nonnegative solution; vi(θi) ≥ 0 for all θi, then Ri
i(θi) ≥ ρvi(θi)

and ρvi(θi) ≥ 0 for all θi ∈ Θi and for all i ∈ N . By Lemma 2, there exists a

PBE of each informed principal game with principal i. We can apply the PBE

to every informed principal game in all bargaining round. vi(θi) represents

the expected payoff for type θi of i when mechanism µi∗ is implemented with

probability wi. Thus, the PBE satisfies the stationarity assumption.

C. Proof of Theorem 4.

We can prove the theorem in the same way as Theorem 3 in Severinov

(2008). Severinov (2008) considered the case in which the expected reservation

payoff for the agent is equal to zero; vj(θj) = 0 for all j ∈ N and for all

θj ∈ Θj. On the other hand, the principal i must give each agent a payoff of
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ρvj(θj) in our model. It is sufficient to show that the expected payoff vector

by any mechanism µi except µi∗ is blocked by the concept of B(Γi) satisfying

Axioms 1-4.

Let (Ui(µ
i|θi))θi∈Θ be the expected payoff vector for each type of player i

under BIC mechanism µi and suppose that Ui(µ
i|θ̂i) < Ri

i(θ̂i) for some θ̂i ∈ Θi.

Define blocking concept B̂i(θ̂i) as follows:

B̂i(θ̂i) =

{
y(·) ∈ R|Θi|

+

∣∣∣∣ ∑
θi∈Θi

y(θi)pi(θi) ≤
∑
θ∈Θ

[∑
j∈N

uj(d
∗(θ), θ)

]
p(θ)

−
∑
j∈N\i

∑
θj∈Θj

pj(θj)ρvj(θj), and y(θ̂i) ≤ Ri
i(θ̂i)

}
.

Following the proof of Theorem 3 in Severinov (2008), B̂i(θ̂i) satisfies Axioms

1-4 and blocks any payoff vector except (Ri
i(θi))θi∈Θi

= (Ui(µ
i∗|θi))θi∈Θi

.
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