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Abstract

This paper investigates should an airline offer vertically differentiated services,

which are substitutes of its own services. The airline operates a certain number

of direct flights to offer various types of services including nonstop, one-stop,

or multiple-stop services. Homogenous passengers care about the fare and the

flight(s) schedule when using a service. Under this general setting, we show that it

is optimal for the airline to offer only one type of service in any particular city-pair

market. This result supports a number of previous works that primarily argue

network efficiency under the condition that only one type of service is offered in

a particular market. This result also provides a theoretical explanation for the

empirical finding that airlines that offer one-stop service through a hub are less

likely to enter the same market with nonstop service than those that do not. This

paper also presents an example of that if passengers horizontally differentiate

among the type of services by other factors, the airline may offer multiple types of

substitutive services in a market on its network.
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1 Introduction

Deregulation started in North America and sequentially in Europe and other re-

gions has led significant changes in the airline industry. In deregulated airline

markets, carriers are free to expand and reorganize their route structure, offer var-

ious types of services and set prices. This freedom has led a dramatic growth of

hub-spoke networks. The economic efficiency of hub-spoke networks generates

from economies of traffic density on cost side and/or from flight frequencies effects

on demand side.1 This is known as a positive “hub-spoke network effect” and it

becomes a fixing knowledge in the industry.

However, since 1990s, it can be often observed that some major carriers (e.g.,

US Airways, Continental and Delta) began offering competing nonstop service

in markets they already serviced with one-stop service through a hub (for the

corresponding markets, see Dunn (2008)).2 Doubtlessly, this way of offering ver-

tically differentiated services, which are substitutes of the carries’ own services,

will weaken the described hub-spoke network effects. Therefore, it is an important

managerial issue to investigate this airline strategy.

The purpose of this paper is to investigate should an airline offer vertically

differentiated services, which are substitutes of its own services. The airline oper-

ates a certain number of direct flights to offer various types of services including

nonstop, one-stop, or multiple-stop services. Homogenous passengers care about

the fare and the flight(s) schedule when using a service. Under this general setting,

we show that it is optimal for the airline to offer only one type of service in any

particular city-pair market.

This theoretical result is consistent with one of the empirical results of Dunn

(2008). Dunn indicated the real-world phenomenon that some major network

carriers began offering nonstop service in markets in which it also operates non-

1 For the studies on cost side, see empirical studies by Caves et al. (1984) and Brueckner and Spiller
(1994); theoretical studies by Brueckner and Spiller (1991) and Hendricks et al. (1995). For those on
demand side, see Brueckner (2004) and Kawasaki (2008), among others.

2 A similar example in the Asia-Pacific is that Qantas currently offers one-stop service on the Tokyo-
Cairns routes connected in Sydney, while its low cost division, Jetstar offers a substitutive nonstop
service in this city-pair market.
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stop service through a hub, and found the evidence that airlines that offer one-stop

service through a hub are less likely to enter that same market with nonstop service

than those that do not. As such, our present result may provide a theoretical

explanation for the empirical finding of Dunn (2008).

Furthermore, this theoretical result also supports a number of previous works

that primarily argued the efficiency between hub-spoke and fully-connected net-

works, under the condition that only one type of service is offered in a particular

market. In other words, the condition that a carrier does not offer vertically differ-

entiated substitutes in its own market (see Bittlingmayer (1990), Hendricks et al.

(1995), Pels et al. (2000), Oum, Zhang and Zhang (1995), Brueckner (2004), Flores-

Fillol (2009) among others). Since the setting of this present paper is quite general,

our result is widely applicable for calculating airlines’ optimal actions (the profit

maximization in monopoly and the derivation of best response in oligopoly).

Finally, this paper also considers a plausible case where passengers horizontally

differentiate among the type of services by other factors (e.g.,). Then, it is shown

that airlines may offer multiple types of substitutive services in a market on its

network if the degree of product differentiation is certain large. This finding seems

consistent with the results of Kawasaki (2008) and Brueckner and Pai (2009), where

differentiation among passengers may persuade an airline to offer both nonstop

and one-stop service in a particular market.

The remainder of this article is organized as follows. Section 2 provides an

example that a carrier supplies only one service among competing services; Section

3 presents the network structures and basic assumptions; Section 4 shows the main

result that a carrier supplies only one service among competing services; Section 5

shows that a carrier supplies all services if competing services are sufficiently not

substitute; Section 6 concludes the paper.
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2 Example

There are three cities 0, 1 and 2. Let C := {0, 1, 2}, which is the set of cities. An

airline operates three flights between each city pair. For any distinct i, j ∈ C, let

i j denote the flight between cities i and j. Let F := {01, 02, 12}, which is the set

of flights. The airline supplies three nonstop services between each city pair and

a one-stop service between cities 1 and 2 with transit at city 0. For any distinct

i, j ∈ C, let i j and 102 denote the nonstop service between cities i and j and the

one-stop service, respectively. Let S := {01, 02, 12, 102}, which is the set of services.

Suppose that services 12 and 102 are substitutes for passengers traveling between

cities 1 and 2.

For any i ∈ {01, 02}, let pi
(
qi, fi
)

be the price of nonstop service i when the

quantity of service i is qi and the frequency of flight i is fi. Let p12
(
Q, f12

)
be the

price of nonstop service 12 when the sum of the quantities of services 12 and 102 is

Q and the frequency of flight 12 is f12. Let p102
(
Q, f01, f02

)
be the price of one-stop

service 102 when the sum of the quantities of services 12 and 102 is Q and the

frequencies of flights 01 and 02 are f01 and f02, respectively. For any i ∈ F , let Ci
(

fi
)

be the cost of flight i when the frequency of flight i is fi. For simplicity, the costs

based on quantities of services are assumed to be constant and normalized to be

zero.3 Then, the airline’s profit with its action
(
q, f
)
=
((

qi
)
i∈S ,
(

fi
)
i∈S
)

is

π
(
q, f
)
=p01

(
q01, f01

)
q01 + p02

(
q02, f02

)
q02

+ p12
(
q12 + q102, f12

)
q12 + p102

(
q102 + q12, f01, f02

)
q102

− C01
(

f01
) − C02

(
f02
) − C12

(
f12
)
.

Assumption 1 states that in the market between cities 1 and 2, there exists a

positive aggregate quantity such that the price of nonstop service 12 is positive.

Assumption 1. For any f12 ∈ R+, there exists Q ∈ R++ such that p12
(
Q, f12

)
> 0.

Assumption 2 states that the profit from nonstop service 12 is greater under

3 This assumption is not crucial for our results.
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some positive frequency of flight 12 than under zero frequency.

Assumption 2. For any
(
q12,Q

) ∈ R2
+ such that 0 < q12 ≤ Q and p12 (Q, 0) > 0, there

exists f12 ∈ R++ such that p12
(
Q, f12

)
q12 − C12

(
f12
)
> p12 (Q, 0) q12 − C12 (0).

Assumption 3 states that the cost of flight 12 is greater under any positive

frequency than under zero frequency.

Assumption 3. For any f12 ∈ R++, C12
(

f12
)
> C12 (0).

The following Proposition 1 states that under Assumptions 1–3, it is necessary

for the profit maximization not to supply both nonstop service 12 and one-stop

service 102 with positive quantities. Before the formal proof, we provide the

intuitive reason first. Suppose that under a profit maximizer, the airline supplies

services 12 and 102 with positive quantities q∗12 and q∗102, respectively. Under this

supposition, it will be shown that the prices of services 12 and 102 are equal and

positive and the frequency of flight 12 is positive. Let the airline’s action change

from the maximizer to an alternative action that is the same as the maximizer except

that the quantities of services 12 and 102 change to 0 and q∗12 + q∗102, respectively,

and the frequency of flight 12 changes to 0. Then, the aggregate quantity in the

market between cities 1 and 2 does not change. Thus, the price of service 102 does

not change. Hence, the revenue from service 102 under the alternative action is the

sum of revenues from services 12 and 102 under the maximizer; the revenue from

service 12 under the alternative action is zero. Therefore, the total revenue does

not change. On the other hand, since the frequency of flight 12 decreases from a

positive number to zero, the cost of flight 12 decreases. Thus, the profit increases,

which contradicts the definition of maximizer.

Proposition 1. Suppose that Assumptions 1–3 hold. Let
(
q∗, f ∗

)
=
((

q∗i
)

i∈S ,
(

f ∗i
)

i∈F

)
be

a profit maximizer. Then, q∗12 = 0 or q∗102 = 0.

Proof. Suppose that q∗12 > 0 and q∗102 > 0. Let p∗12 := p12

(
q∗12 + q∗102, f ∗12

)
and p∗102 :=

p102

(
q∗102 + q∗12, f ∗01, f ∗02

)
.

Lemma 1. p∗12 = p∗102.

5



Proof. Suppose that p∗12 > p∗102. Define
(
q, f
)
=
((

qi
)
i∈S ,
(

fi
)
i∈F
)

as q12 = q∗12 + q∗102,

q102 = 0, q01 = q∗01, q02 = q∗02 and f = f ∗. Then, π
(
q, f
)−π (q∗, f ∗

)
=
(
p∗12 − p∗102

)
q∗102 >

0, which is a contradiction. Similarly, p∗12 < p∗102 leads to a contradiction. Q.E.D.

Lemma 2. p∗12 > 0.

Proof. Suppose that p∗12 = 0. By Assumption 1, there exists Q ∈ R++ such that

p12

(
Q, f ∗12

)
> 0. Define

(
q, f
)
=
((

qi
)
i∈S ,
(

fi
)
i∈F
)

as q12 = Q, q102 = 0, q01 = q∗01,

q02 = q∗02 and f = f ∗. Note that by Lemma 1, p∗102 = 0. Then, π
(
q, f
) − π (q∗, f ∗

)
=

p12
(
Q, f ∗

)
Q > 0, which is a contradiction. Q.E.D.

Lemma 3. f ∗12 > 0.

Proof. Suppose that f ∗12 = 0. Then, by Lemma 2, p12

(
q∗12 + q∗102, 0

)
> 0. Thus, by

Assumption 2, there exists f ′12 > 0 such that p12

(
q∗12 + q∗102, f ′12

)
q∗12 − C12

(
f ′12

)
>

p12

(
q∗12 + q∗102, 0

)
q∗12 − C12 (0). Define

(
q, f
)
=
((

qi
)
i∈S ,
(

fi
)
i∈F
)

as f12 = f ′12, f01 = f ∗01,

f02 = f ∗02, f102 = f ∗102 and q = q∗. Then,π
(
q, f
)−π (q∗, f ∗

)
=
(
p12

(
q∗12 + q∗102, f ′12

)
q∗12 − C12

(
f ′12

))
−(

p12

(
q∗12 + q∗102, 0

)
q∗12 − C12 (0)

)
> 0, which is a contradiction. Q.E.D.

Define
(
q, f
)
=
((

qi
)
i∈S ,
(

fi
)
i∈F
)

as q12 = 0, q102 = q∗12 + q∗102, q01 = q∗01, q02 = q∗02,

f01 = f ∗01, f02 = f ∗02 and f12 = 0. Then, by Lemma 1, π
(
q, f
) − π (q∗, f ∗

)
= C12

(
f ∗12

)
−

C12 (0). Thus, by Lemma 3 and Assumption 3, π
(
q, f
) − π (q∗, f ∗

)
> 0, which is a

contradiction. Q.E.D.

3 Model

For any sets X and Y, let YX be the set of functions from X to Y. For any f ∈ YX,

for any x ∈ X, let fx := f (x). For any f ∈ ZX×Y, for any x ∈ X and any y ∈ Y, let

fxy := f
((

x, y
))

. For any f ∈ YX, for any
(
S, g
) ∈ 2X×YX, let f |gS be the function from

X to Y such that for any x ∈ S, f |gS (x) = g (x) and for any x ∈ X \S, f |gS (x) = f (x): f |gS
is the function obtained by replacing the values of f with those of g on S. For any

f ∈ YX, for any
(
S, y
) ∈ 2X × Y, let f |yS := f |gS, where g is the function from X to Y

such that g (X) =
{
y
}
: f |yS is the function obtained by replacing the values of f with
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y on S. For any f ∈ YX, for any
(
x, y
) ∈ X × Y, let f |yx := f |y{x}: f |yx is the function

obtained by replacing the value of f at x with y.

Let C be a finite set. We call a member of C a city.

Definition 1. A flight is a set of two distinct members in C.

For example, flight
{
i, j
}

represents the flight between cities i and j.

Definition 2. A service is a set i of some flights such that there exists a injection

j : {0, 1, . . . ,K} → Cwith K ∈ Z++ such that i =
{{

jk, jk+1
} | k ∈ {0, 1, . . . ,K − 1}}.

We call j0 and jK terminal cities of service i. For example, service
{{

i, j
}
,
{
j, k
}}

represents the service between cities i and k with transit at city j.

Let (S,F ) be a pair such that S is a set of some services, F is a set of some

flights, and F = ∪S. Any service in S uses some flight in F . Any flight in F is

used by some service inS. Define an equivalence relation ∼ onS as for any i, j ∈ S,

i ∼ j if and only if the set of terminal cities of i is equal to the set of terminal cities

of j. For example, {{i, k}} ∼ {{i, j} , { j, k}}. Let [i] :=
{
j ∈ S | j ∼ i

}
.

Example 1. If for some h ∈ C,F =
{
i ∈ 2C | |i| = 2 ∧ i ∋ h

}
andS =

{
i ∈ 2F | |i| ∈ {1, 2}

}
,

(C,F ,S) represents a hub-spoke network (city h is the hub city).

Example 2. If for some h ∈ C, F =
{
i ∈ 2C | |i| = 2

}
and S =

{
i ∈ 2F | |i| = 1

}
∪{

i ∈ 2F | |i| = 2 ∧ ∀ j ∈ i, j ∋ h
}
, (C,F ,S) represents a hub-spoke network with non-

stop services between non-hub cities.

For any α ∈ [0, 1]S
2
, for any

(
i, j
) ∈ S2, αi j represents a degree of substitution

between services i and j. For any i ∈ S, let pi be a function fromRS+×RF+ ×[0, 1]S
2

to

R+ such that for any
(
q, f , α

)
,
(
q′, f ′, α′

) ∈ RS+×RF+ × [0, 1]S
2
, if for any j ∈ [i], q j = q′j,

for any j ∈ i, f j = f ′j and for any j ∈ [i], αi j = α′i j, then, pi
((

q, f , α
))
= pi
((

q′, f ′, α′
))

.

pi
((

q, f , α
))

represents the price of service i when the quantity of each service

j ∈ S is q j and the frequency of each flight j ∈ F is f j. The price of service i

depends only on the quantities of services that compete with service i (services

in [i]), frequencies of flights that are used in service i (flights in i) and degrees

of substitution between service i and services that compete with service i. Let
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C : RF+ → R+. C
(

f
)

represents the cost for flights when the frequency of each flight

i ∈ F is fi. Define π : RS+×RF+ × [0, 1]S
2 → R as for any

(
q, f , α

) ∈ RS+×RF+ × [0, 1]S
2
,

π
((

q, f , α
))
=
∑

i∈S pi
((

q, f , α
))

qi − C
(

f
)
. The profit is the sum of revenues from

services minus the cost of flights.

Assumption 4 means that the price of each service depends only on the aggre-

gate quantity in the market in which the service is supplied and the frequencies of

flights used in the services.

Assumption 4. For any i ∈ S, for any α ∈ [0, 1]S
2
, for any

(
q, f
)
,
(
q′, f ′

) ∈ RS+ ×RF+ ,

if
∑

j∈[i] αi jq j =
∑

j∈[i] αi jq′j and for any j ∈ i, f j = f ′j , then, pi
((

q, f , α
))
= pi
((

q′, f ′, α
))

.

Assumption 5 ensures the positive revenues in each service.

Assumption 5. For any i ∈ S, for any α ∈ [0, 1]S
2
, for any f ∈ RF+ , for some q ∈ RS+

such that qi > 0, pi
((

q, f , α
))
> 0.

Assumption 6 states that the price of a service is increasing in the frequency of

each flight used in the service.

Assumption 6. For any i ∈ S, for any
(
q′, f ′, α′

) ∈ RS+ × RF+ × [0, 1]S
2

such that

pi
((

q′, f ′, α′
))
> 0, if pi is partially differentiable with respect to f j at

(
q′, f ′, α′

)
,

then, ∂pi
∂ f j

((
q′, f ′, α′

))
> 0.

Assumption 7 states that if the revenue from a service is positive when the

frequency of a flight used by the service is zero, the profit increases as the flight

frequency slightly increases from zero.

Assumption 7. For any
(
i, j
) ∈ S × F , for any

(
q′, f ′, α′

) ∈ RS+ × RF+ × [0, 1]S
2
, if π

is partially differentiable with respect to f j at
(
q′, f ′|0j , α

′
)
, if pi

((
q′, f ′|0j , α

′
))

q′i > 0,

then, ∂π∂ f j

((
q′, f ′|0j , α

′
))
> 0.

Assumptions 8 and 9 state that the inverse demand functions and the cost

function are differentiable in flight frequencies.

Assumption 8. For any i ∈ S, for any
(
q′, f ′, α′

) ∈ RS+ × RF+ × [0, 1]S
2

such that

pi
((

q′, f ′, α′
))
> 0, pi is partially differentiable with respect to f j at

(
q′, f ′

)
.
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Assumption 9. C is partially differentiable.

In this paper, we regard RS+ × RF+ , [0, 1]S
2

as the subspace of the |S| + |F |-

dimensional and |S|2-dimensional Euclid spaces, respectively. Assumption 10

states that the profit is a continuous function.

Assumption 10. π is continuous.

Assumption 11 implies that there exists a compact subset ofRS+ ×RF+ such that

under any degree of substitution, any profit maximizer is in this compact subset.

The profit maximization with capacity constraints for service quantities and flight

frequencies is equivalent to the profit maximization under Assumption 11 without

the capacity constraints.

Assumption 11. There exists a compact subset C of RS+ ×RF+ such that for any α ∈

[0, 1]S
2
, for any

(
q, f
) ∈ RS+×RF+ \C, for some

(
q′, f ′

) ∈ C, π
((

q, f , α
))
< π
((

q′, f ′, α
))

.

Example 3. If for some T ∈
[
0, 1

max {|i||i∈S}
)
, for any i ∈ S, for any

(
q, f , α

) ∈ RS+ ×
RF+ × [0, 1]S

2
, pi
((

q, f , α
))
= max

{
1 − T |i| +

∑
j∈i f j

|i| −
∑

j∈[i] αi jq j, 0
}

and for any f ∈ F ,

C
(

f
)
=
∑

i∈F f 2
i , Assumptions 4–10 are satisfied.

Let M be a correspondence from [0, 1]S
2

toRS+×RF+ such that for any α ∈ [0, 1]S
2
,

M (α) = arg max(q, f)∈RS+×RF+ π
((

q, f , α
))

.

4 Profit maximizers under perfectly substitutive

demands

Proposition 2 is the main result of this paper. This proposition states that if ver-

tically differentiated competing services (i.e., services between the same pair of

terminal cities) are perfectly substitutive,4 it is necessary for the profit maximiza-

tion not to supply multiple competing services with positive quantities.

4 Consider Example 3. Suppose that for any i, j ∈ S such that i ∼ j, αi j = 1. Then, competing
services are perfectly substitutive. On the other hand, due to T and f , competing services are vertically
differentiated.
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Proposition 2. Suppose that Assumptions 4–9 hold. Letα ∈ [0, 1]S
2
. Let

(
q∗, f ∗

) ∈M (α).

If for any i, j ∈ S such that i ∼ j, αi j = 1, then, for any i, j ∈ S such that i , j and i ∼ j,

q∗i = 0 or q∗j = 0.

Proof. Suppose that Assumptions 4–9 hold. Letα ∈ [0, 1]S
2
. Let a∗ =

(
q∗, f ∗

) ∈M (α).

For any i ∈ S, let p∗i := pi
((

q∗, f ∗, α
))

. Suppose that for any i, j ∈ S such that i ∼ j,

αi j = 1. In the following, since α is fixed, we omit α from the arguments of pi and

π.

Lemma 4. For any i, j ∈ S such that i , j and i ∼ j, if q∗i > 0 and q∗j > 0, then, p∗i = p∗j.

Proof. Suppose that p∗i > p∗j. Then, by Assumption 4, π
((

q∗|
q∗i+q∗j
i |0j , f ∗

))
− π (a∗) =(

p∗i − p∗j

)
q∗j > 0, which is a contradiction. Similarly, p∗i < p∗j leads to a contradiction.

Q.E.D.

Lemma 5. For any i ∈ S, if q∗i > 0, then, p∗i > 0.

Proof. Suppose that p∗i = 0. By Assumption 5, for some q ∈ RS+ such that qi > 0,

pi
((

q, f ∗
))
> 0. Thus, pi

((
q∗|q[i], f ∗

))
= pi
((

q, f ∗
))
> 0. Note that by Lemma 4, for

any j ∈ [i] such that q∗j > 0, p∗j = p∗i = 0, and thus, for any j ∈ [i], p∗jq
∗
j = 0.

Then, π
((

q∗|q[i], f ∗
))
− π (a∗) =

∑
j∈[i] p j

((
q∗|q[i], f ∗

))
q j ≥ pi

((
q∗|q[i], f ∗

))
qi > 0, which is a

contradiction. Q.E.D.

Lemma 6. Let q′ be a function from S to R+ such that for any i ∈ S,
∑

j∈[i] q′j =
∑

j∈[i] q∗j

and if q∗i = 0, q′i = 0. Then, for any
(
i, j
) ∈ S × F such that j ∈ i, pi

((
q, f
))

qi is partially

differentiable with respect to f j at
(
q′, f ∗

)
.

Proof. If q′i = 0, the conclusion is obviously obtained. Suppose that q′i > 0. Then, by

the definition of q′, q∗i > 0. Thus, by Lemma 5, p∗i > 0. Hence, by
∑

j∈[i] q′j =
∑

j∈[i] q∗j

and Assumption 4, pi
((

q′, f ∗
))
= p∗i > 0. Therefore, by Assumption 8, the conclusion

is obtained. Q.E.D.

Lemma 7. For any
(
i, j
) ∈ S × F such that j ∈ i, if q∗i > 0, then, f ∗j > 0.
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Proof. Suppose that f ∗j = 0. By Lemma 6 and Assumption 9, π is partially differen-

tiable with respect to f j at
(
q∗, f ∗

)
. By q∗i > 0 and Lemma 5, pi

((
q∗, f ∗

))
q∗i > 0. Note

that by f ∗j = 0,
(
q∗, f ∗

)
=
(
q∗, f ∗|0j

)
. Then, by Assumption 7, ∂π∂ f j

((
q∗, f ∗

))
> 0. Hence,

for some f j ∈ R++, π
((

q∗, f ∗| f j

j

))
> π (a∗), which is a contradiction. Q.E.D.

Let i, j ∈ S. Suppose that i , j and i ∼ j. Suppose that q∗i > 0 and q∗j > 0.

Without loss of generality, since i , j, there exists k ∈ F such that k ∈ i and

k < j. Let a′ =
(
q′, f ′

)
:=
(
q∗|0i |

q∗i+q∗j
j , f ∗

)
. By Lemma 6 and Assumption 9, for

any l ∈ S, pl
(
q, f
)

ql and π are partially differentiable with respect to fk at a∗

and a′. Note that since q′i = 0,
∂pi(q, f)qi

∂ fk

((
q′, f ′

))
= 0. Note also that since k < j,

∂p j(q, f)q j

∂ fk

((
q∗, f ∗

))
= 0 and

∂p j(q, f)q j

∂ fk

((
q′, f ′

))
= 0. Note also that by Assumption 4,

for any l ∈ S \ {i, j}, for any fk ∈ R++, pl

(
q∗, f ∗| fkk

)
q∗l = pl

(
q′, f ′| fkk

)
q′l , and thus,

∂pl(q, f)ql
∂ fk

((
q∗, f ∗

))
=
∂pl(q, f)ql
∂ fk

((
q′, f ′

))
. Then, ∂π∂ fk

(a∗) − ∂π∂ fk
(a′) =

∂pi((q, f))qi

∂ fk
(a∗). Note

that by q∗i > 0 and Lemma 5, p∗i > 0, and thus, by Assumption 8, pi is partially

differentiable with respect to fk at a∗. Then, ∂π∂ fk
(a∗) − ∂π∂ fk

(a′) = ∂pi
∂ fk

(a∗) q∗i . Note that

by p∗i > 0 and Assumptions 6 and 8, ∂pi
∂ fk

(a∗) > 0. Note also that q∗i > 0. Then,

∂π
∂ fk

(a∗) − ∂π∂ fk
(a′) > 0. Note that since a∗ ∈ M and by q∗i > 0 and Lemma 7, f ∗k > 0,

∂π
∂ fk

(a∗) = 0. Then, ∂π∂ fk
(a′) < 0. Note that a′ =

(
q∗|0i |

q∗i+q∗j
j , f ∗

)
and f ∗k > 0. Then, there

exists a′′ =
(
q∗|0i |

q∗i+q∗j
j , f ∗| fkk

)
for some fk ∈ R+ such that π (a′′) > π (a′). Note that by

the construction of a′ and Assumption 4, π (a∗) − π (a′) =
(
p∗i − p∗j

)
q∗i , and thus, by

q∗i > 0 and q∗j > 0, and Lemma 4, π (a∗) = π (a′). Then, π (a∗) < π (a′′), which is a

contradiction. Q.E.D.

5 Profit maximizers under sufficiently not substi-

tutive demands

Proposition 3 states that if vertically differentiated competing services (i.e., services

between the same pair of terminal cities) are not substitutes, it is necessary for the

profit maximization to supply all services with positive quantities.
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Proposition 3. Suppose that Assumptions 4 and 5 hold. Let α ∈ [0, 1]S
2
. Let

(
q∗, f ∗

) ∈
M (α). If for any i, j ∈ S such that i ∼ j, if i = j, αi j = 1 and if i , j, αi j = 0, then, for any

i ∈ S, q∗i > 0.

Proof. Suppose that Assumptions 4 and 5 hold. Let α ∈ [0, 1]S
2
. Let

(
q∗, f ∗

) ∈M (α).

Suppose that for any i, j ∈ S such that i ∼ j, if i = j, αi j = 1 and if i , j, αi j = 0 (♡).

Suppose that for some i ∈ S, q∗i = 0. By Assumption 5, for some q ∈ RS+ such that

qi > 0, pi
((

q, f ∗, α
))
> 0. Let q′ := q∗|qi

i . Then, by Assumption 4 and supposition (♡),

π
((

q′, f ∗, α
)) − π ((q∗, f ∗, α

))
= pi
((

q′, f ∗, α
))

q′i − pi
((

q∗, f ∗, α
))

q∗i . Note that q∗i = 0;

by the construction of q′, Assumption 4 and supposition (♡), pi
((

q′, f ∗, α
))

q′i =

pi
((

q, f ∗, α
))

qi. Then, π
((

q′, f ∗, α
)) − π ((q∗, f ∗, α

))
= pi
((

q, f ∗, α
))

qi > 0, which is a

contradiction. Q.E.D.

Proposition 4 states that if competing services are sufficiently not substitutive,

it is necessary for the profit maximization to supply all services with positive

quantities.

Proposition 4. Suppose that Assumptions 4, 5, 10 and 11 hold. Let α be a function S2

to [0, 1] such that for any i, j ∈ S such that i ∼ j, if i = j, αi j = 1 and if i , j, αi j = 0. If

M (α) is finite, then, there exists neighborhood N of α such that for any α′ ∈ N, for any(
q∗, f ∗

) ∈M (α′), for any i ∈ S, q∗i > 0.

Proof. Suppose that Assumptions 4, 5, 10 and 11 hold. Letα be a functionS2 to [0, 1]

such that for any i, j ∈ S such that i ∼ j, if i = j, αi j = 1 and if i , j, αi j = 0. Suppose

that M (α) is finite. By Assumption 11, there exists a compact subset C of RS+ ×RF+
such that for any α ∈ [0, 1]S

2
, for anyRS+ ×RF+ \C, for some

(
q, f
) ∈ C, π

((
q, f , α

))
<

π
((

q′, f ′, α
))

. Let D be the correspondence from [0, 1]S
2

to RS+ × RF+ such that for

any α ∈ [0, 1]S
2
, D (α) = C. Then, for any α ∈ [0, 1]S

2
, M (α) ⊂ C = D (α). Thus,

for any α ∈ [0, 1]S
2
, M (α) = arg max(q, f)∈D(α) π

((
q, f , α

))
. Note that by Assumption

10, π is a continuous function, and by the difinition of D, D is a continuous

compact-valued correspondence. Then, the Berge’s maximum theorem, M is a

upper-hemicontinuous correspondence. Let q̄ be the member of RS+ such that for

any i ∈ S, q̄i = min(q, f)∈M(α) qi. Note that since M (α) is finite, q̄ is well defined and

12



by Proposition 3, for any i ∈ S, q̄i > 0. Let S :=
{(

q, f
) ∈ RS+ ×RF+ | ∀i ∈ S, qi >

q̄i
2

}
.

Then, S is an open set, M (α) ⊂ S, and for any
(
q, f
) ∈ S, for any i ∈ S, qi > 0. Since

M is a upper-hemicontinuous correspondence and S is an open set, there exists

a neighborhood N of α such that for any α′ ∈ N, M (α′) ⊂ S. Therefore, for any

α′ ∈ N, for any
(
q∗, f ∗

) ∈M (α′),
(
q∗, f ∗

) ∈ S, and thus, by the definition of S, for any

i ∈ S, q∗i > 0. Q.E.D.

6 Conclusion

This paper has been motivated based on the common observation that some major

carriers tended to enter markets with nonstop services in which they have already

offered substitutive one-stop services through their hubs. Under a quite general

setting, we have formally demonstrated that this way of offering vertically differ-

entiated services cannot lead major carriers to obtain the largest profit as long as the

services are perfectly substitutive. This demonstration provides clear managerial

implications for airlines strategies.

However, if competing services in a particular market are horizontally differ-

entiated, i.e., are not perfectly substitutive due to other factors rather than the

number of stops, then, offering multiple types of competing services may be a

reasonable strategy for the carriers. In the real world, instead of the nonstop entry

by themselves, some major carriers have entered the market by establishing a low-

cost nonstop division to offer differentiated services. This paper has shown that

if competing services are sufficiently not substitutive, offering all services with

positive quantities is optimal for an airline. This finding seems consistent with

the studies of Kawasaki (2008) and Brueckner and Pai (2009), who showed that

differentiation among passengers may persuade an airline to offer both nonstop

and one-stop services in a particular market.
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