
1. Introduction

1.1. What is age-period-cohort analysis?

Individual’s behavior changes over time. Changes in behavior can result from shifts in time

period or simply from growing older. Behavior may also vary with birth cohort ; i.e., a group of

people born in a particular period may exhibit similar identifiable behaviors.

Behavior can be defined by effects peculiar to an individual’s age, time period, and birth co-

hort. Changes caused by aging are the result of effects particular to each age. Changes caused

by shifts in time period are the result of effects peculiar to each time period. Similarly, varia-

tions in behavior can be attributed to effects particular to each birth cohort. Age-Period-Cohort

(APC) analysis attempts to measure these effects. Table 1 shows the smoking rate by age

group and by time period. Such an age-period table, with the same time interval for both the

age and period dimensions, is employed in the APC analysis.
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1.2. Identification problem

Decomposing behavior into the three dimensional effects is not simple. Regression analysis

is commonly used to explain behavior according to the three listed effects. Blalock (1967)
noted that an identification problem can occur in a regression model when one of the independ-

ent variables is taken as an exact function of other independent variables. Mason et al. (1973)
noted that the identification problem should occur in APC analysis because the relationship

Period－Age＝Cohort indicates an exact linear dependency among the variables. The depend-

ent variable is explained by two of the three effects because any one effect can be explained by

the other two effects. In this case, a least squares solution cannot be identified because the re-

gression design matrix is singular and so it has no unique inverse matrix (Rodgers, 1982). The

identification problem pertains to the regression design matrix being one less than a full-rank

matrix (Kupper et al., 1983).
Holford (1985) noted that the parameter in each effect consists of linear and curvature ef-

fects. The linear effect is the inestimable overall trend of the parameter, and the curvature ef-

fect is the estimable departure from the trend. Particular age, period, and cohort effects that

depart from the overall trend can be found by considering the curvature effects (e.g., Tango and

Kurashina, 1987). However, the linear effect is still not estimable.

1.3. Previous studies on parameter identification

It is necessary to impose constraints to solve the identification problem. Various constraints

have been proposed.

The coefficients constraint approach has been used in many APC analyses. Mason et al.

(1973) noted that if at least two age groups, periods, or cohorts have an identical effect (e.g.,

�����), then the three effects can be uniquely determined. However, different constraints

lead to different estimates (e.g., Mason et al., 1973 ; Rodgers, 1982 ; Yang, Fu, and Land, 2004;

Fu, 2008). Kupper et al. (1983) contended that the choice of constraint is a crucial determi-

nant of the extent of bias. The effect of each variable can be identified by eliminating one of the

three effects entirely (e.g., Firebaugh and Davis, 1988), which means constraining all age

groups, all periods, or all cohorts to be equal. Rodgers (1982) noted that the imposition of
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Table 1 Smoking rate by age group and period in Japan.

(Gender)
(Period)

Male Female

1969 1979 1989 1999 2009 1969 1979 1989 1999 2009

(Age) 20�29 78.5 80.3 67.5 60.4 40.3 9.9 16.4 16.4 23.6 15.9

30�39 80.6 76.1 68.5 62.0 46.9 13.1 14.0 14.7 17.6 16.8

40�49 83.7 71.2 64.5 63.0 44.9 16.8 15.5 13.8 17.1 14.9

50�59 80.3 74.6 57.3 54.7 44.5 20.7 16.3 10.4 13.2 14.8

60� 71.1 62.0 49.5 38.6 27.8 19.8 15.4 8.6 6.8 6.2

a The data were obtained from the Japan Health Promotion & Fitness Foundation’s website

(http://www.health-net.or.jp) and retrieved from the survey of Japan Tobacco and Salt Public

Corporation and Japan Tobacco Incorporated.



multiple constraints, including the elimination of one of the three effects, brings us no closer

to identifying the actual effects. Kupper et al. (1983) noted that the statistical methodology

employed to demonstrate that considering one of the three effects to be unimportant can be se-

riously misleading. The Bayesian cohort model proposed by Nakamura (1986) is based on the

assumption that the parameters change gradually, i.e., the successive parameters are not ap-

preciably different. However, the parameters do not always change gradually.

The second method proposed to solve the identification problem is the proxy variable ap-

proach. Age-Period-Cohort characteristic models replace the cohort effect with cohort-related

variables, such as the relative size of cohort (Kahn and Mason, 1987) or the percentage of

births to unmarried mothres (O’Brien, Stockard, and Isaacson, 1999). The age or period effect

can also be replaced. Farkas (1977) conceptualized the period effect as the unemployment

rate. Heckman and Robb (1985) proposed a latent variable approach that replaces the three ef-

fects with proxy variables. Winship and Harding (2008) assumed that age, period, and cohort

effects affect the outcome through several intermediary variables. However, proxy variables do

not capture the actual effects accurately. The parameter identification is only an approximation.

The third approach assumes a nonlinear relationship between the parameters. James and

Segal (1982) used a model that incorporates age-period interaction. Lee and Lin (1996) mod-

eled cohort effects as an autoregressive process. Heuer (1997) and Holford (2006) used cubic

splines for two or all three of the effects. O’Brien, Hudson, and Stockard (2008) proposed a

mixed model that treats the age and period effects as fixed effects and the cohort effect as a ran-

dom effect. Fu (2008) proposed a smoothing cohort model that estimates fixed age and period

effects while smoothing the cohort effect with a nonparametric smoothing spline function. The

smoothing cohort effect only introduces a small amount of binding for parameters and thus not

much bias. However, assuming a special functional relationship for the three effects would

make parameter estimates biased.

The forth approach is the intrinsic estimator model proposed by Fu (2000). The model iden-

tifies the parameter vector, which is orthogonal with the eigenvector in the null space of the de-

sign matrix. The eigenvector is independent of the dependent variable ; therefore, the method

imposes a constraint that involves almost no arbitrariness. Yang, Fu, and Land (2004) demon-

strated that the intrinsic estimator model is statically more efficient than the coefficients con-

straint approach. Among the additive APC models, the intrinsic estimator model is thought to

offer the most reliable constrained estimates.

1.4. Purpose of this paper

This paper introduces a new APC model. This model focuses on the fact that behavior com-

prises separable and inseparable components of the three dimensional intrinsic effects, and it

imposes a constraint only on the part of the parameter vector that generates the inseparable

component. This parsimonious constraint is a unique feature distinguishing this model from

other models and will reduce the bias because the intrinsic effects are not biased. This model

assumes that the inseparable component in each cell of the age-period table includes equally di-

vided effects between the birth factor (cohort) and the subsequent environmental factor

(age＋period).
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The original idea of this model comes from Fujimoto (2011), which identified the three ef-

fects on food intake while maximizing the covariation between them. However, Fujimoto did

not explain why a reliable solution can be obtained by maximizing covariation. In addition,

Fujimoto only covered a special case in which the number of parameters corresponds to the

number of equations that could be specified ; therefore, no error term was included.

First, this paper generalizes Fujimoto’s model to include an error term. Second, to show how

this model performs, an analysis to determine the three effects of smoking behavior was per-

formed and compared with the results of the intrinsic estimator model described by Yang, Fu,

and Land (2004). Third, the unbiasedness and reliability of the identified estimator in compari-

son with the intrinsic estimator are demonstrated. Lastly, the reliability of the identified esti-

mator under this model is explained.

2. Material and method

2.1. Model specification

The age-by-period data array analyzed in this paper is shown in Table 1. The effects of age,

period, and cohort are estimated through eq. (１)．
���������������	�� ���

���denotes the smoking rate for the �th age group for ���������at the �th time period for

���������. �denotes the average effect, which is the grand mean over all ���. ��denotes the

�th row age effect or the parameter for the �th age group. ��denotes the �th column period ef-

fect or the parameter for the �th time period. ��denotes the �th diagonal cohort effect or the

parameter for the �th cohort group for ���������. 	��denotes the random error with expecta-

tion, 
�	�����. Table 2 shows the correspondence between ��, ��, and ��. The cohort effects,

��, located on the diagonal lines have the same values. Eq. (１) is based on the assumption

that the three dimensional effects are additive. This additive model is quite common in APC

analyses because it does not require a specific assumption in the function.

���is assumed to be composed of the average, period, age, and cohort effects. The average

effect is common to all cells, but the period, age, and cohort effects are particular to each cell.

For example, in Table 1, the smoking rate for males, 78.5％ for the group of people in their 20s

in 1969, consists of the average effect, �; the age effect, ��; the period effect, ��; and the co-

hort effect, ��.

Then, zero-sum constraints are imposed on the parameters as in eq. (２), (３), and (４).
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���� ���

�
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���
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�����������	�	�����	�
������������� �	�

In eq. ( 4 ), the weight assigned to each parameter is the number of times that the parameter

appears on the age-period table. Then, eq. (５) can be obtained from eq. (２), (３), and (４).
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���, ���, and ���denote ��, ��, and ��, respectively, in cell �����of the age-period table. Eq.
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(５) indicates that ���, ���, and ���are assumed to have a zero sum or zero mean.

Eq. (１) can be transformed to eq. (６).
���������������� ���

���denotes the difference between 	��and its constituents’ average value, 
�����	���
�, or

deviation. ��, ��, or �� are also deviations from their respective means of zero because zero-

sum constraints, as shown in eq. (５), are imposed on them.

2.2. Least squares solution

Eq. (２), (３), (４), and (６) can be expressed as eq. (７) for the least squares regression

model.

������ ���

�denotes the column vector consisting of 25 ���’s. � denotes the regression design matrix

(25×16) and �denotes the column vector consisting of 16 parameters. �denotes the column

vector consisting of 25 ���’s. The exact form of eq. (７) is given by eq. (A. 1) in Appendix A.

It is worth noting that the parameter vector �cannot be identified using a least squares regres-

sion. The design matrix � is one less than full-rank because of the linear dependency.

Therefore, the inverse matrix of � does not exist, and it is impossible to identify a unique so-

lution.

The rank deficient of matrix � can be solved by generating �� exogenously. Then, eq.

(７) is transformed to eq. (８).
��������� ���

��denotes the column vector consisting of 23 ���’s and 2 ��������’s. �� is the regression design

matrix (25×15). �� is the column vector consisting of 15 parameters. The exact form of eq.

(８) is given by eq. (A. 2) in Appendix A.

In eq. (８), a unique least squares solution can be obtained. The obtained parameters, which

are functions of ��, are shown in eq. (９). The parameters can also be obtained as functions

of each individual parameter except ��, ��and ��.

�������	���� �������	���� ���������
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�������	���� ��������	���� ������ ���
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Table 2 Correspondence between ��, ��, and ��.

�� �
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�������������

�������������

�����

Values of �� for ����������are functions of the ���values. Thus, the values of �� are known

constant values. ��, for example, can be written as eq. (10).
������	�
������	���������
�	���		��	���	
��	��
������	�������


�����
�
���
	��
���

��
��	
�������	���������
������ ����

The coefficients for ��, referred to as ��, are also known constant values.

2.3. Parameter identification

In eq. (６), ���is the deviation of 	��from the mean of its constituents, 
. ��, ��, and �
are

also deviations from their respective means of zero. When least squares solutions are obtained,

if both sides of eq. (６) are squared and added across all cells on the age-period table, the varia-

tion function shown in eq. (11) can be obtained.
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���, ���, and ���denote ��, ��, and �
, respectively, in cell �����of the age-period table. The

squared sum of the deviations denotes the variation in the data. Thus, the left side of eq. (11)
is the total variation. On the right side, the first term denotes the variation of the age effect, the

second term signifies the variation of the period effect, the third term is the variation of the co-

hort effect, the fourth term is the covariation between them, and the fifth term is the variation

of error.

��������has disappeared. The reason for this is shown in eq. (12). ��������can be trans-

formed to ������ and corresponds to zero because of the zero-sum constraints (����

�����). ����������implies that the vectors of ���and ���are orthogonal or that the corre-

lation between ���and ���is zero on the age-period table.

�
�

���
�
�

���
��������

�

���
���

�

���
���� ��	�

The interaction term between the error and the parameter has also disappeared because the

first-order condition to minimize ���	
��is ��������������������in the least squares estima-

tion. ���	
��can be referred to as the least squared error.

The APC model introduced in this paper identifies the three effects while maximizing the

covariation. The covariation, 	��������������, can be expressed as a function of ��, which can

be obtained by substituting eq. (９) for the covariation function. When 	��������������is dif-

ferentiated in ��and equated to zero, ���, which maximizes the covariation, can be identified.

Any of the other parameters, where the covariation is maximized, can also be identified by sub-

stituting ��� for eq. (９).
To show how this model performs, an analysis was performed to determine the three effects

of smoking behavior and compare them to the results of the intrinsic estimator model.

2.4. Parameter recovery experiment

The unbiasedness and reliability of the estimators under the maximizing covariation model
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and intrinsic estimator model were assessed by Monte Carlo simulation using repeated random

samples.

The hypothetical parameter vector, �������������������������������, was generated artifi-

cially using random numbers while imposing two sets of constraints. The first are the zero-sum

constraints. The second are the fluctuation ranges of parameters in each dimensional parame-

ter vector. If the range is not constrained, unrealistic parameters are generated.

The hypothetical parameters were substituted for eq. (６), and hypothetical ���values were

obtained. Then, the error, ���, was assumed to be zero. The experiment was performed to de-

termine whether the hypothetical parameters could be recovered from the hypothetical ���val-

ues. The hypothetical parameter that should be recovered will be referred to as the “true

parameter,” and the recovered parameter will be referred to as the “recovered parameter.”

First, the unbiasedness of the estimator was demonstrated. It should be noted that ����
��is

invariant in eq. (11), which corresponds to the fact that the goodness-of-fit measure, ��, is in-

variant with respect to the choice of constraint being imposed to accomplish identification

(Kupper et al., 1983). When the imposed constraint varies, the identified parameter vector

varies, although ����
��does not vary. Even if the identified parameter vector varies, the origi-

nal data will be recovered equally well because ����
��is invariant. Therefore, the difference

between the identified and true parameter vectors represents bias, not error. The identified pa-

rameter vectors in all additive APC models are biased estimators in the sense that, even if the

sample size is increased, the estimated parameter vector does not approach the true parameter

vector. However, when repeated random samples are used, the expected value of bias, i.e., the

difference between the identified and true parameters (e.g., �	��
��
��), may converge to

zero. If so, the identified estimator can be called an approximately unbiased estimator in the

sense that overestimates and underestimates are equally likely in the repeated random sam-

ples.

Second, the reliability of the estimators under the maximizing covariation model and the in-

trinsic estimator model were demonstrated. The reliability implies consistency between the

identified and true parameter vectors. The consistency was assessed in the repeated random

samples.

2.5. Computation

The three effects under the maximizing covariation model were estimated using Wolfram

Mathematica. The command lines are given in Appendix B.

The three effects under the intrinsic estimator model were estimated using Stata add-on pro-

gram written by Schulhofer-Wohl and Yang (2006). The estimation was carried out through eq.

(1) with imposing zero-sum constraints on the parameters as �����, �����, and �����.

The constraint on the cohort effect parameters, �����, is different from that under the maxi-

mizing covariation model, �������.

3. Results

3.1. Three effects of smoking behavior

Let MCE denote the estimator under the maximizing covariation model. Let IE denote the
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intrinsic estimator described by Yang, Fu, and Land (2004). The estimated parameters for

smoking behavior under both models are shown in Table 3. However, for a comparison of MCE

and IE, the cohort effect parameters in IE are reparameterized to be �������by deducting

a constant value from each parameter.

The age effect can be understood as follows. The smoking rate is high for males in their 20s

and 30s but decreases gradually as they grow older and significantly when they pass 60 years

of age. For females, the age effect is different. Their smoking rate increases gradually with

age, reaches a peak in their 40s, and decreases thereafter.

The period effect can be understood as follows. The smoking rate for males decreases re-

markably with the shift in time period. The rate for females does not have a definite relation-

ship with the time period but shows a decreasing trend in the past 10 years.

The cohort effect can be understood as follows. As an overall trend, younger male cohorts

smoke less than older cohorts do. However, for the cohorts who were born before versus after

World War II, that is, in the 1930s and the 1950s, respectively, younger cohorts smoke more

than older cohorts. For females, the trend differs between cohorts born before and after World

War II ; the younger cohorts born in the prewar period smoke less than older cohorts born dur-

ing the same period, whereas younger cohorts born in the postwar period smoke more than

older cohorts born during the same period.

Regarding the MCE, the ratios of ����
�������

��and ����
��to their respective totals are
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Table 3 Identified parameters in APC analysis for smoking behavior.

Male Female

MCE IE MCE IE

Age

effect

�� Age 20s 6.2 4.4 0.4 �0.2

�� 30s 6.3 5.4 0.6 0.3

�� 40s 3.6 3.6 2.3 2.3

�� 50s �1.0 �0.1 1.2 1.4

�� Over 60s �15.2 �13.4 �4.4 �3.8

Period

effect

�� Year 1969 13.9 15.6 0.3 0.9

�� 1979 9.6 10.5 1.6 1.9

�� 1989 �0.4 �0.4 �0.6 �0.6

�� 1999 �4.8 �5.6 1.0 0.7

�� 2009 �18.3 �20.1 �2.3 �2.9

Cohort

effect

�� Born in 1900s 10.5 6.9 9.1 8.0

�� 1910s 5.5 2.9 3.9 3.1

�� 1920s 3.8 2.0 �1.0 �1.5

�� 1930s �3.1 �3.9 �3.8 �4.1

�� 1940s �1.6 �1.6 �3.3 �3.3

�� 1950s 1.8 2.7 0.0 0.3

�� 1960s �1.4 0.4 1.1 1.7

�	 1970s �3.0 �0.4 5.7 6.5

�
 1980s �9.5 �6.0 3.1 4.2



92％ and 8％ for males and 37％ and 63％ for females. On the one hand, this result indicates

that the smoking behavior of males depends primarily on the age and period effects. On the

other hand, for females, smoking behavior depends on the cohort effect rather than on the age

and period effects. It is reasonable to conclude that the smoking behavior of males is easily in-

fluenced by the environmental factors surrounding smoking, such as age or time period, but

that of females is not, instead depending mainly on the cohort effect.

Let us compare MCE with IE. The changes in parameters resulting from growing older,

shifts in time period, or transitions of cohort are identical between MCE and IE. However, the

parameter fluctuation ranges are not identical ; that of the age effect and cohort effect are larger

in MCE than in IE ; that of the period effect is smaller in MCE than in IE.

3.2. Unbiasedness

The results of the parameter recovery experiment are as follows. Unbiasedness can be as-

sessed by the distribution of ������
�, where ���or ��

� denotes recovered or true ��. The fluc-

tuation range of hypothetical parameters was constrained as follows. The cohort effect

parameters were allowed to fluctuate between �10.0 and 10.0. The age and period effect pa-

rameters were allowed to fluctuate between �5.0 and 5.0. The cohort effect parameters can

fluctuate twice as much as the age and period effect parameters because the age-period table

records the change of cohort effect for 80 years (1900s�1980s), whereas it records the changes

in the age effect and period effect for 40 years (20s�60s and 1969�2009, respectively). It is as-

sumed that the sizes of the three true effects, standardized by a time dimensional scale, are

identical. The zero-sum constraints were imposed on the hypothetical parameters as �����,

�����, �����, and �������.

The experiment was repeated 250 times. The results for the MCE and IE are shown in Fig.

1. The means of ������
� for the MCE and IE are �0.24 and �0.32, respectively (95％ confi-
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Fig. 1. Distribution of ������
�.
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dence intervals : �0.51－0.02 and �0.69－0.04, respectively). ������
� reflects bias, not error,

because the error, ���, is assumed to be zero. The distribution of biases, ������
�, are symmetric

around their zero means in both APC models. Thus, ���is an approximately unbiased estimator

of ��in the sense that overestimates and underestimates are equally likely in the repeated ran-

dom samples.

If ��� is an approximately unbiased estimator of ��, all parameters are identified as approxi-

mately unbiased estimators. Any of the parameters can be obtained by multiplying ��by a con-

stant value �� and adding a constant value �� as shown in eq. (９).

3.3. Reliability

Reliability can be assessed by the consistency between the recovered and true parameter

vectors. Three experiments were performed that employed different constraints for the fluc-

tuation range of hypothetical parameters. The cohort effect parameters were allowed to fluctu-

ate between －10.0 and 10.0 in all experiments. The age and period effect parameters were

allowed to fluctuate between－5.0 and 5.0 in experiment 1, between－10.0 and 10.0 in experi-

ment 2, and between－20.0 and 20.0 in experiment 3. The zero-sum constraints were imposed

on the hypothetical parameters as �	���, �
���, �����, and �������. Each experiment

was repeated 250 times.

First, the standard deviations of the 	���	�
� values were compared between MCE and IE,

where 	�� or 	�
� denotes recovered or true 	�. The age effect is parameterized identically in

both models as �	���, therefore, we do not need to mind the influence of the parameteriza-

tion. The reliability decreases as the standard deviation increases, i.e., the bell curve shown in

Fig. 1 becomes flatter. The results are shown in Table 4. In experiment 2, the p-value indi-

cates no significant difference in the standard deviations between MCE and IE. However, the

significant difference is observed in experiment 1 and 3. MCE is more reliable than IE in ex-

periment 1, but less reliable in experiment 3.

Second, to test reliability, ranking values based on size were given to each parameter in each

dimensional parameter vector (e.g., if 	��	��	��	��	�, 	���, 	���, 	���, 	���,

	���), and the consistency of the recovered and true parameter vectors was compared. The

consistency was demonstrated by Kendall’s coefficient of concordance, referred to as �
).
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Table 4 Standard deviation of 	���	�
�values across 250 samples.

Experiment MCE IE p-valuea

1 �5�A, P�5 1.06 1.43 0.00

2 �10�A, P�10 1.61 1.58 0.73

3 �20�A, P�20 2.71 1.99 0.00

a p-value for the two-sample variance-comparison test.
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2) � is defined by the following formula.

������
��������������������



���when the ranking values are perfectly matched between the recovered and true parame-

ter vectors. When they are completely random, ���. Table 5 shows the mean of the � val-

ues across 250 samples. In experiment 2, the p-value indicates no significant difference in the

means between MCE and IE. However, the significant difference is observed in experiment 1

and in experiment 3 except age effect. MCE is more reliable than IE in experiment 1 because

the ranking values can be recovered more accurately, whereas IE is more reliable in experi-

ment 3.

It can be concluded that MCE is more reliable than IE when the sizes of the true age effect

and period effect are smaller than that of the true cohort effect on the age-period table (in ex-

periments 1), whereas MCE is less reliable than IE when the sizes of the true age effect and

period effect are larger than that of the cohort effect (in experiment 3).

4. Discussion

In the following, we discuss why the identified estimator under the maximizing covariation

model is reliable.

4.1. Illustration of variations

The variation function from eq. (11) can be rewritten as eq. (13).

�
�

���
�
�

���
��

����
�

���
�
�

���
��
����

�

���
�
�

���
������������

�

���
�
�

���
��

�����
�

���
�
�

���
������������ ����

����
�������

��is transformed to ������������because �����������������
�������

��is

established from eq. (12). The variation of error, ����
��, is moved to the left side. The total

variation, ����
��, is invariant. The total variation after deducting the error variation, ����

��

�����
��, is also invariant because the error variation is invariant. In the following sections, the

total variation after deducting the error variation is simply referred to as the total variation.

������������, ����
��, and ��������������� can be functions of ��, which can be ob-
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	denotes the number of components in the sample. The sample is composed of the recovered and true

parameter vectors such that 	��. 
 denotes the number of parameters in each dimensionsl parameter

vector : 
��for age effect, 
��for period effect, and 
��for cohort effect. ��for ��������
 de-

notes the total of ranking values of recovered and true �th parameters. For example, when the ranking

valurs of recovered and true ��’s are 4 and 3, respecitively, ���	��. �
 denotes the average of

����

������
�).

Table 5 Mean of � values across 250 samples.

Experiment

Age Period Cohort

MCE IE
p-

valuea MCE IE
p-

valuea MCE IE
p-

valuea

1 �5�A, P�5 0.94 0.92 0.00 0.95 0.93 0.01 0.97 0.95 0.00

2 �10�A, P�10 0.96 0.96 0.87 0.96 0.96 0.76 0.94 0.94 0.48

3 �20�A, P�20 0.97 0.98 0.21 0.97 0.98 0.00 0.90 0.92 0.00

a p�value for the mean�comparison test, paired data.



tained by substituting eq. (９) for them. Fig. 2 illustrates the relationship between �� and

������������, ����
��, and ��������������� using an age-period table. ��� denotes

������������, �� denotes ����
��, and ���denotes ���������������.

When ����	�, the covariation is maximized. The variation of the age＋period effect or the

cohort effect is minimized at �
��
�� or �
��

� when ����
����
� or ����
���

� . �
����
� can be obtained

by differentiating ������������ in �� and equating it to zero. �
���
� can also be obtained by

differentiating ����
��in �� and equating it to zero. It is then interesting to note that �	��

��
����
� ��
���

� ���is established, which indicates that �	�is located in the center of �
����
� and

�
���
� .

4.2. How is variation decomposed?

When the covariation is maximized, how is the total variation decomposed? ��� can be con-

sidered to consist of �
��
�� and �����
��

��. �� can also be considered to consist of �
��
� and

����
��
� . Then, the variation function in eq. (13) can be rewritten as eq. (14).
����
��

����
��
� �������
��

���������
��
� ����� ����

��denotes the total variation. �
��
�� is explained only by the age＋period effect because if not

so ���can be less than �
��
��. And �
��

�� is invariant because it can be a function of the invariants


��’s. Similarly, �
��
� is also explained only by the cohort effect and is invariant. Thus, �
��

�� and

�
��
� are separable from the total variation as the intrinsic variations. However, �����
��

��,

����
��
� , and ���cannot be separated without any constraints because their values depend on

��. The total variation comprises the separable and inseparable components for the intrinsic

variation of the age＋period effect or cohort effect.

Then, it is interesting to note that �	����
��
����	���
��

� is established, where �	��and �	�are

the variations of the age+period effect and the cohort effect, respectively, when the covariation
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Variation

Fig. 2. Variation functions of ��.
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is maximized. Therefore, the previously inseparable variation is separated into ��������
��,

�������
� and ��	so that it can be assigned equally to ��������

�� and �������
� .

4.3. How is behavior decomposed?

Eq. (13) shows that the total variation consists of the variation of the age＋period effect, the

variation of the cohort effect, and the covariation between them. The covariation merely repre-

sents the degree of linkage between the age＋period effect and the cohort effect. Therefore,

behavior in the APC model consists of the birth factor (cohort effect) and the subsequent en-

vironmental factor (age＋period effect). The APC analysis has suffered from questions about

how to decompose behavior into the two factors. When covariation is maximized, the

age＋period effect and the cohort effect are linked as closely as possible on the age-period

table. Then, how is the behavior of the dependent variable decomposed ?

Let ����
�
 or ����

�
 denote the age effect or period effect when ���������
� . Let ����

�
 denote the

cohort effect when ��������
� . ��
, ��
, or ��
 can be considered to consist of ����

�
 and

��
�����
�
 , ����

�
 and ��
�����
�
 , or ����

�
 and ��
�����
�
 . Then, eq. (６) can be rewritten as eq. (15).

��
�����
�
 �����

�
 �����
�
 ����
�����

�
 �����
�����
�
 �����
�����

�
 ����
 ����

����
�
 , ����

�
 , and ����
�
 are separable from the behavior of the dependent variable as the intrinsic

effects, because ����
�� and ����

� are separable from the total variation as the intrinsic variations.

However, ��
�����
�
 , ��
�����

�
 , and ��
�����
�
 cannot be separated without any constraints be-

cause their values depend on ��. The separable components in each cell of the age-period table,

����
�
 �����

�
 �����
�
 , obtained from the data in Table 1, are tabulated in Table 6. The inseparable

components, ���
�����
�
 �����
�����

�
 �����
�����
�
 �, obtained from the data in Table 1, are

also tabulated in Table 7. We find in Table 7 that the values located on the diagonal lines are

identical.

Why are the identical values located on the diagonal lines ? Eq. (15) can be rewritten as eq.

(16).
��
������

�
 �����
�
 �����

�
 ����
����
�����
�
 �����
�����

�
 �����
�����
�
 � ����

On the right side of eq. (16), ��
, ����
�
 , ����

�
 , ����
�
 , and ��
are invariant. A least squares regres-

sion model can be formulated from eq. (16). Let ��
������
�
 �����

�
 �����
�
 ����
be the depend-

ent variable ; let ��
�����
�
 , ��
�����

�
 , and ��
�����
�
 be independent variables. Then, ��
�

�����
�
 �����

�
 �����
�
 ����
can be explained completely only by ��
�����

�
 , which in turn can be

explained completely only by ���
�����
�
 �����
�����

�
 �. The exact linear dependency can be
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Table 6 ����
�
 �����

�
 �����
�
 of smoking behavior.

(Gender)
(Period)

Male Female

1969 1979 1989 1999 2009 1969 1979 1989 1999 2009

(Age)

20�29 18.4 20.5 10.2 7.0 �10.2 �2.6 1.7 0.4 6.2 0.0

30�39 14.3 14.3 10.6 5.9 �6.4 �2.6 �1.2 �0.3 2.1 3.0

40�49 15.5 7.3 1.6 3.5 �10.4 2.2 0.4 �1.6 2.9 0.5

50�59 9.8 6.7 �7.3 �7.3 �14.6 6.3 2.4 �2.9 �1.2 �1.5

60� �2.3 �8.6 �17.5 �25.8 �35.1 6.2 2.0 �5.4 �6.9 �10.0



found between ��������
�� and ���������

�� �����������
�� �, i.e., ��������

�� is taken as an exact func-

tion of ���������
�� �����������

�� �, as shown in eq. (17), which is the root of the identification

problem.

���������
�� �������������

�� �����������
�� �� ����

�denotes the coefficient that determines how to decompose the inseparable component.

Why must we impose the constraint on the parameter vector ���������	to achieve identi-

fication? We can solve the identification problem by imposing the constraint parsimoniously on

the parameter vector ���
����
� ���
����

� ���
����
� 	, which will reduce the bias because the

intrinsic effects, ����
�� , ����

�� , and ����
�� , are not biased. For example, in the coefficients constraint

approach in APC analysis, if the constraint is imposed on the parameter vector ���
����
� �

��
����
� ���
����

� 	, e.g., �������
� ��������

� , the identified estimator may be more reliable

than the estimator under the constraint imposed on the parameter vector ���������	, e.g.,

�����.

When the covariation is maximized, ���is established in eq. (17), which means that

���������
�� �����������

�� �����������
�� �is established in all cells of the age-period table. The

result implies that the maximizing covariation model imposes a constraint only on the parame-

ter vector that generates the inseparable component, and the inseparable component is equally

divided between the age＋period effect and cohort effect. The inseparable component can be

explained only by either the cohort effect or the age＋period effect. Accordingly, this APC

model assumes that the inseparable component in each cell of the age-period table includes

equally divided effects between the birth factor (cohort) and the subsequent environmental fac-

tor (age＋period).

4.4. How is behavior decomposed under intrinsic estimator model?

When the parameter vector that generates the separable component, �����
� �����

� �����
� 	, is

deducted from the parameter vector ���
����

����
�	which is identified under the intrinsic esti-

mator model, the parameter vector ���
�
����

� ���
�
����

� ���
�
����

� 	is obtained. Let us as-

sume that the cohort effect parameter vector, ��
�, is reparameterized to be ����

����, and

generate an age-period table from the parameter vector ���
�
����

� ���
�
����

� ���
�
����

� 	ob-

tained from the data in Table 1. Then, Table 7 can be generated.

And then, ��
�������

�� is taken as an exact function of ���
�������

�� �����
�������

�� �as shown in

eq. (17). When the data for males in Table 1 are used, �＝0.24 ; when those for females are
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Table 7 ���������
�� �����������

�� �����������
�� �of smoking behavior.

(Gender)
(Period)

Male Female

1969 1979 1989 1999 2009 1969 1979 1989 1999 2009

(Age)

20�29 0.0 �2.9 �5.7 �8.6 �11.5 0.0 0.3 0.6 0.9 1.2

30�39 2.9 0.0 �2.9 �5.7 �8.6 �0.3 0.0 0.3 0.6 0.9

40�49 5.7 2.9 0.0 �2.9 �5.7 �0.6 �0.3 0.0 0.3 0.6

50�59 8.6 5.7 2.9 0.0 �2.9 �0.9 �0.6 �0.3 0.0 0.3

60� 11.5 8.6 5.7 2.9 0.0 �1.2 �0.9 �0.6 �0.3 0.0



used, �＝－3.22. We can find no consistency in the constraint (i.e., �) to separate the insepa-

rable component. It is impossible to determine �statistically because the dependent variable

can be explained completely only by either the cohort effect or the age＋period effect. The

value of �must be given exogenously and is the crucial determinant of the extent of bias. We

need a reasonable and consistent assumption to separate the inseparable component.

5. Conclusion

This paper revealed that, in an additive age-period-cohort model, the behavior of the depend-

ent variable comprises separable components for the three dimensional intrinsic effects and in-

separable components resulting from the linear dependency among them. This paper proposed

to impose a constraint only on the part of the parameter vector that generates the inseparable

component, then solve the identification problem. This parsimonious constraint will reduce the

bias because the intrinsic effects are not biased.

This paper also revealed that the total variation of the dependent variable comprises the

variation of the age＋period effect, the variation of the cohort effect, and the covariation be-

tween them. The APC model introduced in this paper identifies the three effects while maxi-

mizing the covariation. The maximization enables the age＋period effect and the cohort effect

on behavior to be linked as far as possible on the age-period table. Consequently, the insepara-

ble component is divided equally between the age＋period effect and the cohort effect, which

implies that only the part of the parameter vector that generates the inseparable component is

constrained. The inseparable component can be explained only by either the cohort effect or

the age＋period effect. Accordingly, this APC model assumes that the inseparable component

in each cell of the age-period table includes equally divided effects between the birth factor (co-

hort) and the subsequent environmental factor (age＋period). We have no information on the

factors determining the inseparable component ; therefore, we have no option but to rely on

this neutral assumption.

The identified estimator is biased in all additive APC models because the variation of error

is invariant regardless of the choice of constraint being imposed to accomplish identification.

Therefore, even if the sample size is increased, the estimated parameter vector will not ap-

proach the true parameter vector. However, when repeated random samples are used, the ex-

pected value of bias converges to zero. The identified estimator under this APC model can be

considered as an approximately unbiased estimator in the sense that overestimates and under-

estimates are equally likely in the repeated random samples.

The reliability of the identified estimator under this APC model was compared with the in-

trinsic estimator. The results show that this APC model is more reliable when the sizes of the

true age effect and period effect are smaller than that of the true cohort effect on the age-period

table, but less reliable when the sizes of the true age effect and period effect are larger than

that of the true cohort effect. It can be deduced that the reliability depends on how the insepa-

rable component is divided into the birth factor (cohort) and the subsequent environmental fac-

tor (age＋period), i.e., how the �in eq. (17) is determined under a reasonable assumption.
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�1 �1 �1 �1 �1 �1 �1 �1 0 0 0 1 0 0 0 0
�1 �1 �1 �1 1 0 0 0 0 0 0 0 1 0 0 0
�1 �1 �1 �1 0 1 0 0 0 0 0 0 0 1 0 0
�1 �1 �1 �1 0 0 1 0 0 0 0 0 0 0 1 1
�1 �1 �1 �1 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 �1 �1 �1 �1 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 �1 �1 �1 �1 0 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 1 0 �1 �1 �1 �1 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 1 �1 �1 �1 �1 �2 �3 �4 �5 �4 �3 �2 �1
0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
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Appendix A
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�1 �1 �1 �1 �1 �1 �1 �1 0 0 0 1 0 0 0
�1 �1 �1 �1 1 0 0 0 0 0 0 0 1 0 0
�1 �1 �1 �1 0 1 0 0 0 0 0 0 0 1 0
�1 �1 �1 �1 0 0 1 0 0 0 0 0 0 0 1
�1 �1 �1 �1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 �1 �1 �1 �1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 �1 �1 �1 �1 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 1 0 �1 �1 �1 �1 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 �1 �1 �1 �1 �2 �3 �4 �5 �4 �3 �2
0 0 0 1 1 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
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Appendix B

(* Least Squares estimation *)
LeastSquares [{{��, ��, ��, ��, ��, ��, ��, ��, �, �, �, �, �, �, �}, {��, ��, ��, ��, �, �, �, �, �,
�, �, �, �, �, �}, {��, ��, ��, ��, �, �, �, �, �, �, �, �, �, �, �}, {��, ��, ��, ��, �, �, �, �, �, �,
�, �, �, �, �}, {��, ��, ��, ��, �, �, �, �, �, �, �, �, �, �, �}, {�, �, �, �, ��, ��, ��, ��, �, �, �,
�, �, �, �}, {�, �, �, �, �, �, �, �, �, �, �, �, �, �, �}, {�, �, �, �, �, �, �, �, �, �, �, �, �, �, �},
{�, �, �, �, �, �, �, �, �, �, �, �, �, �, �}, {�, �, �, �, �, �, �, �, �, �, �, �, �, �, �}, {�, �, �, �,
��, ��, ��, ��, �, �, �, �, �, �, �}, {�, �, �, �, �, �, �, �, �, �, �, �, �, �, �}, {�, �, �, �, �, �, �,
�, �, �, �, �, �, �, �}, {�, �, �, �, �, �, �, �, �, �, �, �, �, �, �}, {�, �, �, �, �, �, �, �, �, �, �, �,
�, �, �}, {�, �, �, �, ��, ��, ��, ��, �, �, �, �, �, �, �}, {�, �, �, �, �, �, �, �, �, �, �, �, �, �, �},
{�, �, �, �, �, �, �, �, �, �, �, �, �, �, �}, {�, �, �, �, �, �, �, �, �, �, �, �, �, �, �}, {�, �, �, �,
�, �, �, �, �, �, �, �, �, �, �}, {�, �, �, �, ��, ��, ��, ��, ��, ��, ��, ��, ��, ��, ��}, {�, �, �, �,
�, �, �, �, �, �, �, �, �, �, �}, {�, �, �, �, �, �, �, �, �, �, �, �, �, �, �}, {�, �, �, �, �, �, �, �, �,
�, �, �, �, �, �}, {�, �, �, �, �, �, �, �, �, �, �, �, �, �, �}}, {��.�, ��.�, 	�.�, 	�.�, ��.��C
, ��.	,

�	.�, 	�.�, 	�, �	.
, ��.�, ��.�, 	�.�, 	�, ��.
, ��.�, ��.	, ��.�, ��.�, ��.�, ��.�+C
, 	�, �
.�,

��.	, ��.�}]

(* Substituting estimated parameters for covariation function *)
Eliminate [{��
＝＝�*((��＋��)*��＋(��＋��)*�	＋(��＋��)*��＋(��＋��)*��＋(��

＋��)*�
＋(��＋��)*��＋(��＋��)*��＋(��＋��)*�	＋(��＋��)*��＋(��＋��)*
��＋(��＋��)*��＋(��＋��)*��＋(��＋��)*��＋(��＋��)*�	＋(��＋��)*��＋(��

＋��)*��＋(��＋��)*��＋(��＋��)*��＋(��＋��)*��＋(��＋��)*�	＋(��＋��)*
��＋(��＋��)*��＋(��＋��)*��＋(��＋��)*��＋(��＋��)*��)���＋��＋��＋��

＋��＝＝����＋��＋��＋��＋��＝＝����＋���＋���＋���＋���＋��	＋���＋���

＋�
＝＝����＝＝��
�������
���＝＝��	����＝＝����＋�����
���＝＝－�����＋�����
�

��＝＝���
�＋�����
���＝＝－�������＝＝－����－�����
���＝＝－����
－�����
���

＝＝－��	�－�����
���＝＝－��
�－�����
���＝＝－����－�����
���＝＝－��	��

�	＝＝����＋�����
���＝＝����＋�����
���＝＝����＋�����
}�{������������������

����������������������������	������}]

(* Differentiating covariation function in �
and equating to zero*)
D[(�����������
���C
�	���C
̂ �)/���, C
]
Solve[(���
���������C
)���＝＝�, C
]
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